Product Performance Evaluation Report

Document ID: DHF-45-2009741

Project Name	PCR 2019-nCoV Kit	Project Number	2009741
Product Name	PerkinElmer [®] SARS-CoV-2 Real- time RT-PCR Assay	Revision	V03
Created/Revised by		Date	2020-10-16

Reviewed by	Role	Opinion	Signature/Date
	РМО	AMW ved	20W, /1, /
	Testing Engineer	Approved	20.10.16
	R&D Engineer	Approved	20-20.10,10
	QA Engineer	Approved	020.10.16.
	RA Specialist	Approved	0.10/ ، 52 52
	Associate Director	Approved	2020.10.16
Approved by	Role	0pinion	Signature/Date
	R&D Sr. Director	Approved	-
	QA Manager	Approved	2000.10.16

Contents

1.	Qua	ntification	of inactivated cultured virus					
2.	Ana	lytical Sens	sitivity Study4					
	2.1	Inst	ruments and Materials5					
	2.2	Acce	eptable Results for Verification5					
		2.2.1	LOD determination5					
		2.2.2	LOD verification5					
	2.3	Resi	ults and Conclusion5					
		2.3.1	LOD determination on Pre-NAT II5					
		2.3.2	LoD verification on Pre-NAT II8					
		2.3.3	Sample Type Equivalency Study on Pre-NAT II using Contrived Clinical Sample9					
		2.3.4	LOD determination on chemagic [™] 36010					
		2.3.5	LoD verification on chemagic [™] 36012					
		2.3.6	LoD Verification Using chemagic [™] 360 and Alternative PCR Systems (Equivalency					
		of PCR Sy	R Systems)13					
		2.3.7	LOD Verification in Saliva Matrix Background14					
		2.3.8	Equivalency of CMG1033 and CMG-1033-S14					
		2.3.9	LOB sudy14					
3.	Spec	cificity						
	3.1	Inst	ruments and Materials15					
	3.2	Acce	eptable Results for Verification15					
	3.3	Resi	ults and Conclusion15					
		3.3.1	Analytical Reactivity (Inclusivity)15					
		3.3.2	Analytical Specificity (Cross-reactivity)16					
		3.3.3	Interfering Substances Studies27					
4.	Prec	ision						
	4.1	Prec	ision Study on PreNat II					
		4.1.1	Precision Experimental Design					
		4.1.2	Instruments and Reagents					

		4.1.3	Testing Sample	30
		4.1.4	Acceptance Criteria	31
		4.1.5	Testing Plan	31
		4.1.6	Testing Results	32
		4.1.7	Data analysis	35
	4.2	Prec	ision Study on chemagic [™] 360	35
		4.2.1	Instruments and Reagents	35
		4.2.2	Testing Sample	36
		4.2.3	Acceptance Criteria	36
		4.2.4	Testing Plan	36
		4.2.5	Testing Results	37
		4.2.6	Data analysis	38
5.	Valio	dation of tl	ne assay procedure	39
Refe	erence	es		39

PerkinElmer[®] SARS-CoV-2 Real-time RT-PCR Assay

Performance Evaluation

This document is to describe the performance studies conducted on the PerkinElmer[®] SARS-CoV-2 Realtime RT-PCR Assay, including assay analytical sensitivity, specificity, tolerance to interfering substances and assay precision. The results generated from these studies are to verify that the product performance meet the design input defined in the Product Requirements Specification and that it is safe and effective for its intended use.

1. Quantification of inactivated cultured virus

A SARS-CoV-2 virus (Isolate 2/231/human/2020/CHN) which was isolated from clinical specimen, cultured and inactivated was used for the performance evaluation study. The inactivated virus stock was quantified using droplet digital PCR (ddPCR). Briefly, the original viral stock was diluted 10 times in virus transport medium (VTM), 400µl of which was extracted in three replicates using PerkinElmer[®] Nucleic Acid Extraction Kit (KN0212) and PerkinElmer[®] Pre-NAT II Automated Workstation. The RNA was eluted into 60µl of Elution buffer, and 5µl of the elute was taken for ddPCR quantification in a 20µl reaction volume. ddPCR quantification was performed by using the BioRad One-Step RT-ddPCR Advanced Kit for Probes (Cat. No. 1864021) and the QX200 system. The reaction and thermocycling conditions were setup according to manufacturer's instructions.

For target N, the ddPCR output results are 171, 200 and 203 copies/µl for three replicates (table 1), in average 191.3 copies/µl. This gives to 3826.7 copies for the 20µl reaction, and 3826.7 copies for the 5µl RNA elute that was input into ddPCR. This means for 400µl sample, the N target yields in 60µl RNA elute is 45920 copies.

For target ORF1ab, the ddPCR output results are 68, 69 and 76 copies/ μ l for three replicates (table 1), in average 71 copies/ μ l. This gives to 1420 copies for the 20 μ l reaction, and 1420 copies for the 5 μ l RNA elute that was input into ddPCR. This means for 400 μ l sample, the ORF1ab target yields in 60 μ l RNA elute is 17040 copies.

Target	ddPCR	A	Copies/ 20µl ddPCR	Copies in 5µl	Copies in 60µl	
	(copies/µl)	Average	reaction	RNA elute	RNA elute	
	171					
N	200	191.333	3826.7	3826.7	45920	
	203					
ORF1ab	68	71	1420	1420	17040	
	69	/1	1420	1420		

Table 1: ddPCR results and calculation of RNA elute concentration.

76	
/6	

To estimate the concentration of RNA in the original cultured virus stock, extraction efficiency was estimated by spiking in 20μ l of the RNA elute from the above-mentioned experiment into 380μ l of VTM and RNA was extracted using the same extraction reagents and protocol. The eluted RNA was quantified using ddPCR as described as above, and the output results are listed in table 2.

Target	ddPCR	A	Copies/ 20µl	Copies in 5µl	Copies in 60µl	
	(copies/µl)	Average	ddPCR reaction	RNA elute	RNA elute	
	26.1					
N	28.4	26.7	534	534	6408	
	25.6					
	12.1					
ORF1ab	12	12.05	241	241	2892	
	No call*					

Table 2: ddPCR results and calculation of RNA elute concentration.

*one of the replicates was no called due to droplet number below low limit.

From the two steps of extraction and ddPCR quantification results shown in table 1 and 2, extraction efficiency for target N was calculated to be $6408 \times (60/20)/45920 = 41.9\%$ and extraction efficiency for target ORF1ab was calculated to be $2892 \times (60/20)/17040 = 50.9\%$.

From ddPCR results on the RNA sample from the first step extraction, and the extraction efficiency, the target concentrations in the original virus stock are:

N: 10 (dilution fold) × 45920 copies/ 41.9%/ 0.4ml = 2.74× 10⁶ copies/ml.

ORF1ab: 10 (dilution fold) \times 17040 copies/ 50.9%/ 0.4ml = 8.37 \times 10⁵ copies/ml.

It was expected that target N exists at higher copy numbers than target ORF1ab, as target N locates at the 3' end of the coronavirus genome and target ORF1ab locates at the 5' end. The coronavirus transcription initiates at the 3' end of the genome, where target N locates, so it exists in either short or long cDNA fragments, while target ORF1ab is only transcribed when a long cDNA fragment is generated.

2. Analytical Sensitivity Study

According to the definition in CLSI guideline EP17-A2 ^[1], limit of detection (LoD) was determined as the lowest concentration of SARS-CoV-2 that the PerkinElmer[®] SARS-CoV-2 Real-time RT-PCR Assay gives a \geq 95% detection rate. Considering that the COVID-19 pandemic urgently requires disgnostic tests and the SARS-CoV-2 isolates was not readily available due to its high biosafety level, the LoD study protocol was modified from EP17-A2 ^[1] by taking a few recommendations from the FDA EUA guideline ^[2] for molecular-based tests for SARS-CoV-2. The procedure is briefly described below.

- 10-fold dilutions of the SARS-CoV-2 isolate was tested to identify the concentration range for LoD (≥ 4 replicates per dilution);
- 2) Within the identified LoD concentration range, 2-fold dilutions of SARS-CoV-2 were tested (≥ 5 replicates per dilution) and detection rate will be analyzed using Probit regression to predict a concentration that gives 95% detection rate.
- 3) At least 20 replicates of the predicted LoD (95% detection rate) was then tested to confirm whether the concentration can result in ≥ 95% detection rate. If the predicted LoD failed to give ≥ 95% detection rate, 1.5x or 2x of the predicted LoD would be tested to verify the actual LoD for the assay.

Two extraction systems were tested in analytical sensitivity study:

- PerkinElmer[®] Pre-NAT II Automated Workstation and PerkinElmer[®] Nucleic Acid Extraction Kit (KN0212);
- 2) chemagic[™] 360 and chemagic[™] Viral DNA/RNA 300 Kit special H96 (CMG-1033/CMG-1033-S).

2.1 Instruments and Materials

Instruments: PerkinElmer[®] Pre-NAT II Automated Workstation, chemagic[™] 360, ABI7500, Applied Biosystems 7500 Fast / QuantStudio 3 / QuantStudio 5 Real-Time PCR Systems and Analytik Jena qTOWER³ / qTower³ 84 Real-Time PCR system, Omni bead mill homogenizer, Hard Tissue Homogenizing Mix.

Materials: SARS-CoV-2 virus (Isolate 2/231/human/2020/CHN), SeraCare RNA reference material containing the entire SARS-CoV-2 viral genome (0505-0159), PerkinElmer[®] Nucleic Acid Extraction Kit (KN0212), chemagic[™] Viral DNA/RNA 300 Kit special H96 (CMG-1033/CMG-1033-S), PerkinElmer[®] SARS-CoV-2 Real-time RT-PCR Assay, Negative clinical oropharyngeal swab, nasopharyngeal swab and saliva specimens.

2.2 Acceptable Results for Verification

2.2.1 LOD determination

The LoD was calculated from a probit regression model as the measurand concentration.

2.2.2 LOD verification

The LoD was determined as the lowest concentration where \geq 95% of the replicates were positive.

2.3 Results and Conclusion

2.3.1 LOD determination on Pre-NAT II

Limit of detection (LoD) was determined as the lowest concentration of SARS-CoV-2 that at which the PerkinElmer[®] SARS-CoV-2 Real-time RT-PCR Assay can detect at a ≥95% positive rate. Samples were prepared by spiking in different concentrations of SARS-CoV-2 into negative clinical oropharyngeal swab specimen matrix. Oropharyngeal swabs were collected from healthy individuals (no COVID-19

infection history, no COVID-19 symptoms and had no contact with SARS-CoV-2 infected patients within in 14 days) and was tested using PerkinElmer[®] SARS-CoV-2 Real-time RT-PCR Assay and confirmed to be negative. The negative oropharyngeal swabs were mixed to form a pool for LoD study. The LoD study was conducted in two steps, in the first step of the study, a total of six 10-fold dilutions of known concentrations of inactivated SARS-CoV-2 virus (Isolate 2/231/human/2020/CHN) were prepared in negative clinical matrix and processed using the PerkinElmer[®] Nucleic Acid Extraction kit on the PreNAT II Automated Workstation. Four PCR replicates per concentration were tested. The results are summarized in table 3.

Dilution fold	N		ORF1ab		Mean Ct		
	Conc. (copies/ml)	Detection rate	Conc. (copies/ml)	Detection rate	N	ORF1ab	IC
1.0E+04	274	4/4	83.7	4/4	34.88	34.29	33.17
1.0E+05	27.4	4/4	8.37	3/4	38.74	37.67	33.27
1.0E+06	2.74	2/4	0.837	2/4	39.57	38.71	33.11
1.0E+07	0.274	1/4	0.0837	1/4	40.11	38.75	33.44
1.0E+08	0.0274	0/4	0.00837	0/4	/	/	32.68
1.0E+09	0.00274	0/4	0.000837	0/4	/	/	33.02
Negative	0	0/4	0.00	0/4	/	/	32.83

Table 3: LoD study results from 10-fold dilution of inactivated SARS-CoV-2 (Lot 1: AY20200202).

From the results shown in table 3, it suggests that the assay LoD is between dilution fold 1.0E+04 and 1.0E+06. The next step of LoD study was conducted on 2-fold dilutions of the virus stock covering the 10^4 to 10^6 dilutions of the stock, and the concentration is from 274 to 2.14 copies/ml. The results are summarized in table 4.

	N		ORF1ab		Mean Ct		
Dilution fold	Conc.	Detection	Conc.	Detection	N		
	(copies/ml)	rate	(copies/ml)	rate	IN	OKFIAD	
1.0E+04	274	20/20	83.7	20/20	34.95	35.48	31.55
2.0E+04	137	20/20	41.85	20/20	35.93	36.23	31.65
4.0E+04	68.5	20/20	20.93	20/20	36.91	37.10	31.70
8.0E+04	34.25	19/20	10.46	19/20	38.15	38.64	31.61
1.6E+05	17.13	18/20	5.23	13/20	38.80	39.48	31.60

Table 4: LoD study results from 2-fold dilution of inactivated SARS-CoV-2 (Lot 1: AY20200202).

3.2E+05	8.56	11/20	2.62	11/20	39.44	39.93	31.28
6.4E+05	4.28	8/20	1.31	7/20	40.26	40.44	31.41
1.28E+06	2.14	5/20	0.65	3/20	40.10	40.65	31.16
negative	0	0/20	0	0/20	/	/	31.15

Based on the detection rate of different dilutions using reagent Lot 1 (AY20200202), six 2-fold SARS-CoV-2 dilutions of known concentrations were prepared in negative clinical matrix for LoD study using another two batches of reagents, Lot2 (AY20200203) and Lot 3 (AY20200204). Twenty individual replicates per dilution were tested from extraction. The results are summarized in table 5 and 6.

Table 5: LoD study results from 2-fold dilution of inactivated SARS-CoV-2 (Lot 2: AY20200203).

	N		ORF1	Lab	Mean Ct		
Dilution fold	Conc.	Detection	Conc.	Detection	N	ORF1ab	IC
	(copies/ml)	rate	(copies/ml)	rate			
2.0E+04	137	20/20	41.85	20/20	35.43	34.74	30.29
4.0E+04	68.5	20/20	20.93	20/20	36.30	35.63	30.36
8.0E+04	34.25	20/20	10.46	20/20	37.41	36.88	30.39
1.6E+05	17.13	19/20	5.23	18/20	38.38	37.82	30.03
3.2E+05	8.56	20/20	2.62	16/20	39.22	38.98	30.24
6.4E+05	4.28	12/20	1.31	12/20	39.87	39.61	30.44
negative	0	0/20	0	0/20	/	/	30.67

Table 6: LoD study results from 2-fold dilution of inactivated SARS-CoV-2 (Lot 3: AY20200204).

	Ν		ORF1ab		Mean Ct		
Dilution fold	Conc. (copies/ml)	Detection rate	Conc. (copies/ml)	Detection rate	N	ORF1ab	IC
2.0E+04	137	20/20	41.85	20/20	35.58	36.17	31.24
4.0E+04	68.5	20/20	20.93	20/20	36.22	36.42	31.23
8.0E+04	34.25	20/20	10.46	20/20	37.26	37.84	31.23
1.6E+05	17.13	18/20	5.23	14/20	38.05	38.72	31.16
3.2E+05	8.56	16/20	2.62	17/20	38.49	39.46	30.93
6.4E+05	4.28	14/20	1.31	11/20	38.97	39.02	30.72
negative	0	0/20	0	0/20	/	/	30.61

Probit analysis predicted 95% detection rate is presented in table 7.

Let	Probit predicted concentrations for	or 95% detection rate (copies/mL)
LOL	Ν	ORF1ab
Lot 1	24.884	9.307
(AY20200202)	(95% CI: 17.032 – 57.917)	(95% CI: 7.428 – 13.003)
Lot 2	13.111	6.078
(AY20200203)	(95% CI: 9.324-39.812)	(95% CI: 4.306-16.957)
Lot 3	20.669	8.958
(AY20200204)	(95% CI: 14.064-80.886)	(95% CI: 6.267-23.042)

Table 7: Probit predicted cocnetrations for 95% detection rate using inactivated SARS-Cov	95% detection rate using inactivated SARS-CoV-2
---	---

Based on the probit analysis predicted concentrations giving 95% detection rate using three lots of reagents, Lot 1 (AY20200202) reagents give the highest concentrations for both N and ORF1ab. From the ddPCR quantification data described in section 1, in the virus stock, when N = 24.884 copies/ml, ORF1ab is 7.6 copies/ml, this is below probit predicted ORF1ab LoD 9.3 copies/ml, which means there is risk that ORF1ab can not reach 95% detection rate. When ORF1ab =9.3 copies/ml, N is 30.47 copies/ml, higher than probit predicted N LoD 24.884 copies/ml. As a confirmed positive result requires both targets to be detected, so the tentative LoD: ORF1ab =9.307 copies/ml and N= 30.467 copies/ml was furthere verified by testing 20 individual replicates using three lots of reagents. A verified LoD requires to achieve \geq 95% detection rate for both targets.

2.3.2 LoD verification on Pre-NAT II

Inactivated SARS-CoV-2 virus was diluted into negative oropharyngeal swabs matrix at tentative LoD concentration (ORF1ab =9.307 copies/ml and N= 30.467 copies/ml). 20 replicates of the sample were extracted using Nucleic Acid Extraction Kit (KN0212) on Pre-NAT II and tested using the PerkinElmer[®] SARS-CoV-2 Real-time RT-PCR Assay. The results are summarized in table 8.

Lot	Concentratio	on (copies/ml)	Detection rate		
LOU	Ν	ORF1ab	Ν	ORF1ab	
Lot 1 (AY20200202)	30.467	9.307	100% (20/20)	95% (19/20)	
Lot 2 (AY20200203)	30.467	9.307	100% (20/20)	100% (20/20)	
Lot 3 (AY20200204)	30.467	9.307	100% (20/20)	100% (20/20)	

Table 8:	LoD	verification	results

2.3.3 Sample Type Equivalency Study on Pre-NAT II using Contrived Clinical Sample

In order to evaluate whether the assay has similar detection sensitivity for oropharyngeal swab and nasopharyngeal swab specimens, these two types of swabs were collected from 141 healthy individuals (no COVID-19 infection history, no COVID-19 symptoms and had no contact with SARS-CoV-2 infected patients within in 14 days) by trained personnel. Oropharyngeal swabs were collected using Viral Transport Medium from YOCON and nasopharyngeal swabs were collected using Universal Transport Medium from COPAN. Samples were immediately tested using the PerkinElmer® SARS-CoV-2 Real-time RT-PCR Assay and confirmed to be negative. A cultured SARS-CoV-2 (Isolate 2/231/human/2020/CHN) was spiked into 47 of the oropharyngeal swabs and 47 of the nasopharyngeal swabs at a range of concentrations (2×LoD, 4×LoD, 10×LoD, 20×LoD, 50×LoD, 100×LoD, 200×LoD, 250×LoD and 500×LoD, according to the LoD on Pre-NAT II) to prepare contrived positive clinical samples with low and medium viral load. 20 replicates were tested at 2×LoD, 20 replicates were tested at 4×LoD, and 1 sample were tested at 10×LoD, 20×LoD, 50×LoD, 100×LoD, 200×LoD, 250×LoD and 500×LoD. The rest of 94 oropharyngeal swabs and 94 nasopharyngeal swabs were tested as negative clinical samples directly. The 141 oropharyngeal samples and 141 nasopharyngeal samples were tested in a blinded fashion (samples were prepared and capped, then all the tubes were mixed in a box and extracted using the PerkinElmer® Nucleic Acid Extraction Kit (KN0212) and Pre-NAT II in a random order). The 282 extracted samples were tested using the PerkinElmer® SARS-CoV-2 Real-time RT-PCR Assay and results are shown in the tables 9 and 10.

SARS-CoV-2	Number of	Detection	Detection rate		Mean Ct	
concentration	samples	N	ORF1ab	N	ORF1ab	IC
2×LoD	20	20/20	20/20	37.05	37.03	31.90
4×LoD	20	20/20	20/20	35.48	35.56	32.58
10×LoD	1	1/1	1/1	34.93	35.58	33.98
20×LoD	1	1/1	1/1	34.94	34.38	30.72
50×LoD	1	1/1	1/1	34.53	34.17	34.44
100×LoD	1	1/1	1/1	32.17	31.48	31.33
200×LoD	1	1/1	1/1	33.38	32.33	34.94
250×LoD	1	1/1	1/1	32.15	31.44	34.73
500×LoD	1	1/1	1/1	30.32	30.27	33.38
Negative	94	0/94	0/94	/	/	32.63

Table 9: Clinical evaluation with oropharyngeal samples.

Table 10: Clinical evaluation with nasopharyngeal samples.

SARS-CoV-2	Number	of	Detection rate		Mean Ct			
concentration	samples		Ν	ORF1ab	Ν	ORF1ab	IC	

2×LoD	20	20/20	20/20	38.01	37.77	31.98
4×LoD	20	20/20	20/20	37.12	36.32	32.11
10×LoD	1	1/1	1/1	35.46	34.72	31.64
20×LoD	1	1/1	1/1	35.46	34.23	32.13
50×LoD	1	1/1	1/1	33.27	32.92	29.86
100×LoD	1	1/1	1/1	31.78	31.43	30.46
200×LoD	1	1/1	1/1	32.95	31.49	32.08
250×LoD	1	1/1	1/1	31.85	30.49	32.04
500×LoD	1	1/1	1/1	30.40	29.73	30.24
Negative	94	0/94	0/94	/	/	31.78

All positive samples at 2×LoD, 4×LoD, 10×LoD, 20×LoD, 50×LoD, 100×LoD, 200×LoD, 250×LoD and 500×LoD were positive and all negative samples were negative in the background of individual oropharyngeal swab and nasopharyngeal swab matrix from the same voluenteer, suggesting that the the PerkinElmer[®] SARS-CoV-2 Real-time RT-PCR Assay detection sensitivity is comparable with oropharyngeal swab and nasopharyngeal swab specimens.

2.3.4 LOD determination on chemagic[™] 360

Samples were prepared using pooled clinical oropharyngeal swabs or nasopharyngeal swabs specimen matrix. The pooled matrix was tested using PerkinElmer[®] SARS-CoV-2 Real-time RT-PCR Assay and confirmed to be negative before using as LoD study matrix.

A total of six 2-fold dilutions of known concentrations of inactivated SARS-CoV-2 virus (Isolate 2/231/human/2020/CHN) were prepared in the negative clinical matrix and processed using chemagic[™] Viral DNA/RNA 300 Kit special H96 (CMG-1033) on chemagic[™] 360 instrument, the extracted RNA was then tested using the PerkinElmer[®] SARS-CoV-2 Real-time RT-PCR Assay. Six individual extraction replicates per dilution were tested. The detection rate at each dilution and probit predicted LoD at 95% detection rate are summarized in tables 11-14.

Oropharyngeal swab							
	Ν		ORF1ab		Mean Ct		
Dilution fold	Conc.	Detection	Conc.	Detection	N	OBE1ab	
	(copies/ml)	rate	(copies/ml)	rate	IN	OKFIAD	
2.0E+04	137	6/6	41.85	6/6	36.48	36.82	32.18
4.0E+04	68.5	6/6	20.93	6/6	37.04	37.98	32.14
8.0E+04	34.25	6/6	10.46	6/6	39.10	38.88	32.21
1.6E+05	17.13	5/6	5.23	4/6	38.89	39.77	32.35
3.2E+05	8.56	3/6	2.62	2/6	39.35	39.85	32.28

Table 11: Preliminary LoD study using oropharyngeal swabs on chemagic[™] 360.

rkinElmer"苏州新波生物技术有限公司

6.4E+05	4.28	0/6	1.31	0/6	1	/	32.41
Negative	0	0/6	0	0/6	/	/	32.23

Table 12: Probit predicted 95% detection rate using oropharyngeal swabs spiked with SARS-CoV-2 on

chemagic™	360.
-----------	------

Probit predicted 95% de	tection rate (copies/mL)
Ν	ORF1ab
19.077	7.142
(95% CI: 14.498 – 37.122)	(95% CI: 5.341 – 23.998)

Table 13: Preliminary LoD study using nasopharyngeal swabs on chemagic[™] 360.

Nasopharyngeal swab								
	Ν		ORF1ab	ORF1ab				
Dilution fold	Conc.	Detection	Conc.	Detection	N	ODF1ab		
	(copies/ml)	rate	(copies/ml)	rate		OKFIAD		
2.0E+04	137	6/6	41.85	6/6	36.65	36.55	32.32	
4.0E+04	68.5	6/6	20.93	6/6	38.17	36.78	32.38	
8.0E+04	34.25	6/6	10.46	6/6	38.55	38.24	32.60	
1.6E+05	17.13	4/6	5.23	6/6	39.40	40.50	32.59	
3.2E+05	8.56	2/6	2.62	1/6	39.59	40.53	32.86	
6.4E+05	4.28	2/6	1.31	2/6	39.50	39.70	32.28	
Negative	0	0/6	0	0/6	/	/	32.33	

Table 14: Probit predicted 95% detection rate using nasopharyngeal swabs spiked with SARS-CoV-2 on

chemagic[™] 360.

Probit predicted 95% detection rate (copies/mL)					
N ORF1ab					
26.44	8.323				
(95% CI: 18.338 – 69.511) (95% CI: 5.833 – 20.685)					

From the ddPCR quantification data described in section 1, for oropharyngeal swab sample, when N = 19.077 copies/ml, ORF1ab is 5.83 copies/ml, this is below probit predicted ORF1ab LoD 7.142 copies/ml, which means there is risk that ORF1ab can not reach 95% detection rate. When ORF1ab =7.142 copies/ml, N is 23.38 copies/ml, higher than the probit predicted N LoD; for nasopharyngeal swab sample, when N = 26.44 copies/ml, ORF1ab is 8.08 copies/ml, this is below probit predicted ORF1ab LoD 8.323 copies/ml, which means there is risk that ORF1ab can not reach 95% detection rate. When ORF1ab =8.323 copies/ml, N is 27.25 copies/ml, higher than probit predicted N LoD 26.44 copies/ml.

As a confirmed positive result requires both targets to be detected, so the tentative LoD: ORF1ab =7.142 copies/ml and N= 23.38 copies/ml was further verified using oropharyngeal swab matrix and ORF1ab =8.323 copies/ml and N= 27.25 copies/ml was further verified using nasopharyngeal swab matrix. A verified LoD requires to achieve ≥95% detection rate for both targets.

2.3.5 LoD verification on chemagic[™] 360

Pooled negative oropharyngeal swab matrix and pooled negative nasopharyngeal swab matrix was prepared for the LoD verification study. Inactivated SARS-CoV-2 virus was spiked into oropharyngeal swab matrix at 1x and 1.5x probit predicted LoD (ORF1ab =7.142 copies/ml and N= 23.38 copies/ml) and into nasopharyngeal swab matrix at 1x and 1.5x probit predicted LoD (ORF1ab =8.323 copies/ml) and N= 27.25 copies/ml) to verify the actual LoD in these two types of matrix. Twenty replicates per concentration were prepared and extracted using the chemagic[™] Viral DNA/RNA 300 Kit special H96 (CMG-1033) on the chemagic[™] 360 instrument and tested using the PerkinElmer® SARS-CoV-2 Real-time RT-PCR Assay. The results are summarized in tables 15 and 16. For both sample types tested at 1× 95% probit LoD, one replicate was negative for the N target and one replicate was negative for the ORF1ab target, giving a both-target detection rate of 90% (18/20). At 1.5× 95% probit LoD, both sample types gave a detection rate of 100% for both targets, therefore, the actual LoDs were verified as ORF1ab =10.713 copies/ml and N= 35.07 copies/ml for oropharyngeal swab and ORF1ab =12.485 copies/ml and N= 40.871 copies/ml for nasopharyngeal swab

Concentration (copies/ml)		Detec	Detection rate		Mean Ct		
LoD	N	ORF1ab	N	ORF1ab	N	ORF1ab	IC
1X	23.380	7.142	95% (19/20)	95% (19/20)	38.44	38.76	33.13
1.5X	35.070	10.713	100% (20/20)	100% (20/20)	38.74	38.11	33.09

Table 15: chemagic[™] 360 LoD verification results for oropharyngeal swab.

Concentration (copies/ml)		Detection rate		Mean Ct			
LoD	N	ORF1ab	N	ORF1ab	N	ORF1ab	IC
1X	27.246	8.323	95% (19/20)	95% (19/20)	38.53	38.44	32.81
1.5X	40.871	12.485	100% (20/20)	100% (20/20)	38.50	37.79	32.72

Table 16: chemagic[™] 360 LoD verification results for nasopharyngeal swab.

The LoDs on Pre-NAT II and chemagic[™] 360 are ranging from 9.3 copies/ml to 12.5 copies/ml for ORF1ab and 30.5 copies/ml to 40.9 copies/ml for N, these results show that the two extraction methods exhibited very comparable detection sensitivity when used with PerkinElmer[®] SARS-CoV-2 Real-time RT-PCR Assay.

2.3.6 LoD Verification Using chemagic[™] 360 and Alternative PCR Systems (Equivalency of PCR Systems)

To expand the use of the PerkinElmer SARS-CoV-2 Real-time RT-PCR Assay for use with the Applied Biosystems 7500 Fast / QuantStudio 3 / QuantStudio 5 Real-Time PCR Systems and Analytik Jena qTOWER³ / qTower³ 84 Real-Time PCR system, a study was conducted using contrived clinical nasopharyngeal swab specimens. Pooled negative nasopharyngeal swab specimens were spiked with two or three known concentrations of SeraCare RNA reference material containing the entire SARS-CoV-2 viral genome (0505-0159). Nucleic acids were extracted using the chemagic Viral DNA/RNA 300 Kit special H96 (CMG-1033) on chemagic[™] 360 instrument and up to 20 individual extraction replicates were tested on each PCR instrument platforms according to the instructions for use. Testing on the original Applied Biosystems 7500 PCR System was included in this study for equivalency comparison. The results are summarized in the following tables. The LoD was confirmed to be 20 copies/mL for ABI7500, ABI 7500 Fast Dx, QuantStudio 3, QuantStudio 5 and qTower³ 84, and 10 copies/ml for qTower³. The detection sensitivity of all six instruments is considered equivalent.

Instrument	Concentration	Target	Mean	Detection Rate for	Overall Detection Rate
Instrument	(copies/mL)		Ct	Target Gene	for Algorithm
	67	N	40.2	80% (16/20)	0.0% (19/20)
	0.7	ORF	39.4	75% (15/20)	90% (10/20)
ABI 7500	20	Ν	37.8	95% (19/20)	100% (20/20)
	20	ORF	37.5	95% (19/20)	100% (20/20)
	67	N	38.1	45% (9/20)	00% (18/20)
ABI 7500	0.7	ORF	39.0	85% (17/20)	90% (10/20)
Fast Dx	20	N	37.7	75% (15/20)	100% (20/20)
	20	ORF	37.5	100% (20/20)	100% (20/20)
	10	N	ND	0% (0/3)	(70/ (7/2)
	12	ORF	34.1	67% (2/3)	0/%(2/3)
052	20	N	35.7	30% (6/20)	100% (20/20)
U33	20	ORF	35.3	95% (19/20)	100% (20/20)
	60	N	35.8	45% (9/20)	
		ORF	33.0	95% (19/20)	95% (19/20)
	12	N	ND	0% (0/3)	0% (0/2)
	12	ORF	ND	0% (0/3)	0% (0/3)
OSE	20	Ν	35.8	25% (5/20)	
US5	20	ORF	37.0	95% (19/20)	95% (19/20)
	60	N	36.3	55% (11/20)	100% (20/20)
	00	ORF	35.1	100% (20/20)	100% (20/20)
	67	N	39.3	30% (6/20)	750/ (15/20)
	0.7	ORF	39.7	65% (13/20)	/ 5% (15/20)
	10	N	38.2	65% (13/20)	100% (20/20)
qrower	10	ORF	37.8	95% (19/20)	100% (20/20)
	20	Ν	38.5	75% (15/20)	100% (20/20)
	20	ORF	36.9	100% (20/20)	100% (20/20)
	40	Ν	37.9	95% (19/20)	100% (20/20)

Table 17: LoD verification on alternate PCR platforms.

		ORF	36.1	100% (20/20)	
— 3	10	N	38.5	35% (7/20)	0.00/ (1.9./2.0.)
		ORF	38.4	80% (16/20)	90% (16/20)
qrower	20	N	39.0	55% (11/20)	
84	20	ORF	37.3	85% (17/20)	95% (19/20)
	10	N	38.0	80% (16/20)	100% (20/20)
	40	ORF	36.7	100% (20/20)	100% (20/20)

2.3.7 LOD Verification in Saliva Matrix Background

The LoD (20 copies/ml) determined on QuantStudio 5 in the nasopharyngeal swab matrix background (described in section above) was further verified in saliva matrix background using the same instrument. Briefly, SARS-CoV-2 reference control material was spiked into negative saliva matrix to prepare positive samples at 20 copies/ml. In total 20 extraction replicates of this positive sample were extracted on chemagic[™] 360 and amplified on QuantStudio 5. The results are summarized in the following table and LoD 20 copies/ml was verified by a 20/20 detection rate in the saliva matrix background.

Concentration	Concentration Detection			Mean Ct	
(copies/ml)	N ORF1ab		IC	N	ORF1ab
20	20/20	20/20	30.7	35.53	35.14

Table 18: chemagic[™] 360 LoD verification results for saliva.

2.3.8 Equivalency of CMG1033 and CMG-1033-S

The chemagic[™] Viral DNA/RNA 300 Kit special H96 has two versions: CMG-1033 and CMG-1033-S. The entire nucleic acid extraction process using these two versions of kit is the same, the only difference is that beads are removed once from the final elute for CMG-1033 and twice for CMG-1033-S.

CMG-1033: after elution, magnetic rods remove beads from elution buffer, the elute is used for PCR. CMG-1033-S: after elution, magnetic rods collect beads from elution buffer and dispose the beads in a deep-well plate containing MilliQ water, then move back to elution buffer to collect any possible carryover beads, finally the elute is used for PCR.

Removing beads from elute one more time is to reduce the risk of beads carryover in elution buffer, theoretically this step would not affect the extraction as it was conducted after extraction process is done.

2.3.9 LOB sudy

According to the results which were showed in tables 3~6, 9~11 and 13, data from total 264 negative samples was analyzed referring to "Assign LoB = Zero and Confirm" approach described in CLSI guideline EP17-A2^[1]. All the negative samples showed no Ct with 45 cycles of amplification. The percentage of false-positive results was 0%. LoB = zero is confirmed for PerkinElmer[®] SARS-CoV-2 Real-time RT-PCR Assay.

3. Specificity

3.1 Instruments and Materials

Instruments: PerkinElmer[®] Pre-NAT II Automated Workstation, ABI7500.

Materials: Encapsulated SARS-CoV-2 ORF1ab RNA, Encapsulated SARS-CoV-2 N RNA, PerkinElmer[®] Nucleic Acid Extraction Kit (KN0212), PerkinElmer[®] SARS-CoV-2 Real-time RT-PCR Assay, Negative clinical oropharyngeal swab and nasopharyngeal swab specimens, potential cross-reactivity panel and potential interfering substances.

3.2 Acceptable Results for Verification

Positive samples and negative samples were expected to show corresponding positive and negative results in the presence of potential cross-reactivity and interfering substances.

3.3 Results and Conclusion

3.3.1 Analytical Reactivity (Inclusivity)

The primers and probes for targets N and ORF1ab used in the PerkinElmer[®] SARS-CoV-2 Real-time RT PCR Assay were designed at the beginning of the outbreak of COVID-19, at which time there was limited number of SARS-CoV-2 sequences. As the spreading of the disease, more and more SARS-CoV-2 sequences are publicly available. To ensure that the assay can successfully detect SARS-CoV-2 strains evolved thereafter and inform customers potential false negative results caused by virus mutation at primer/probe target regions, PerkinElmer has kept close monitoring of published sequences every 1-2 weeks, and conducted *in silico* analysis by aligning the primer and probe sequences to all available SARS-CoV-2 sequences till a date. Such sequence monitoring and *in silico* analysis will be continuingly conducted and updated after the product launch.

BLASTn analysis queries alignments (*in silico* analysis) were conducted with the SARS-CoV-2 ORF1ab and N primer and probe oligonucleotide sequences with all publicly available SARS-CoV-2 nucleic acid sequences in GenBank by the date June 15th 2020 to demonstrate the predicted inclusivity of the PerkinElmer® SARS-CoV-2 Real-time RT-PCR Assay. The analysis results are shown in table 19.

Target	Name	Total sequence aligned	Sequence with mismatches	Mismatch description	Effect of mismatches (theoretical analysis)
Forward	3748	153 (4.08%)	The 1 st to 3 rd bp from the 5'end	5' end mismatches normally do not affect PCR amplification	
	primer		14 (0.37%)	The 7 th bp from the 5'end	The current assay thermal cycling condition with annealing

Table 19: In silico analysis of the primer and probe inclusivity.

			21 (0 56%)	The 16 th bp	temperature at 55 °C should be
			21 (0.50%)	from the 5'end	able to tolerate one mismatch
	Reverse	2749	1 (0.020/)	The 11 th bp	within the primer
	primer	3748	1 (0.03%)	from the 5'end	
			The 15 th hr	1-2 base pairs mismatches	
	Probe	3749	2 (0.05%)	from the E' and	should not affect TaqMan probe
			from the 5 end	PCR	
	Forward	1116	3 (0 07%)	The 15 th bp	The current assay thermal cycling
	primer	4440	3 (0.07 %)	from the 5'end	condition with annealing
	Boyorco			The 1^{st} or 18^{th}	temperature at 55 °C should be
OD51ab	neverse	3728	5 (0.13%)	bp at the 5'	able to tolerate one mismatch
OKFIAD	primer			end	within the primer
		robe 4321		The 1 st and/or	1-2 base pairs mismatches at the
	Probe 4		5 (0.12%)	2 nd or 3 rd bp at	5' end of probe should not affect
				the 5' end	TaqMan probe PCR

There were 1~3 base-pair of mismatches at the 5' end of N forward primer, ORF1ab reverse primer and ORF1ab probe for a few newly released sequences. As PCR amplification mainly depends on the affinity between primer 3' end and target sequence, 5' end mismatches or overhangs normally do not affect PCR amplification. For this reason, the 5' end of primers are often modified different from the target sequence in a lot of molecular technologies without affecting the amplification efficiency. These mismatches are not expected to affect assay performance since they are located at the 5' end of the primer sequence.

For mismatch close to the 5' end of the sequences, experience has shown that a proper design of the primers and probes with melting temperatures > 60 °C and PCR run conditions of the assay with annealing temperature at 55°C could tolerate one to two mismatches. The PerkinElmer® SARS-CoV-2 Real-time RT-PCR Assay uses a traditional 3-step thermal cycling program with annealing temperature set at 55°C to tolerate potential mismatches like these single base pair mutations without affecting the assay performance.

Overall, the *in silico* analysis showed that these oligoes can still cover almost all strains and isolates identified and sequenced by the time May 10th 2020, and the assay should generate a positive result if any SARS-CoV-2 virus is present at a detectable level.

3.3.2 Analytical Specificity (Cross-reactivity)

Cross-reactivity of the PerkinElmer[®] SARS-CoV-2 Real-time RT-PCR Assay was evaluated using both *in silico* analysis and wet testing against normal and pathogenic organisms found in the respiratory tract. BLASTn analysis queries of the PerkinElmer[®] SARS-CoV-2 Real-time RT-PCR Assay primers and probes were performed against public domain nucleotide sequences with default settings. The database search parameters were as follow:

- The match and mismatch scores were 1 and -3, respectively.
- The penalty to create and extend a gap in an alignment was 5 and 2, respectively.
- The search parameters automatically adjusted for short input sequences and the expected threshold was 1000.

In summary no organisms, including other related SARS-coronaviruses, exhibited >80% homology to the forward primer, reverse primer, and probe for either the ORF1ab or N target except SARS-coronavirus and Bat coronavirus. For SARS-coronavirus and Bat coronavirus, only one primer (forward or reverse) or proble has >80% homology, the combining use of primers and probe for each target gene is unlikely to result in amplification or fluorescence. Other than that, at present no other SARS-like coronaviruses are circulating in the human population, making it even low chance to catch other SARS-like coronaviruses.

The %Homology of N and ORF1ab region primer and probes is summarized in tables 20 and 21. Overall, the results of this analysis predict no significant cross-reactivity or microbial interference.

Pathogen	Strain	GenBank Acc#	%Homology of N forward primer	%Homology of N reverse primer	%Homology of N probe
Human coronavirus 229E	229E	NC_002645.1	36.36	40.91	45
Human coronavirus OC43	ATCC VR- 759	NC_006213.1	45.45	45.45	50
Human coronavirus HKU1	HCoV- HKU1	NC_006577.2	36.36	40.91	45
Human coronavirus NL63	NL63	NC_005831.2	40.91	45.45	50
SARS-coronavirus	NA (isolate "Tor2")	NC_004718.3	90.91	68.18	75
Bat coronavirus	bat-SL- CoVZC45	MG772933.1	100.00	63.64	65
MERS-coronavirus	NL140455	MG987421.1	40.91	40.91	55
Adenovirus (e.g. C1 Ad. 71)	type 2	J01917.1	40.91	45.45	55
Human Metapneumovirus (hMPV)	CAN97-83	NC_039199.1	36.36	45.45	55

Table 20: The %Homology of N primers and probe.

Parainfluenza virus 1 (Human respirovirus 1)	HPIV1/Los _Angeles/ USA/CHLA 36/2016	MK167043.1	40.91	45.45	40
Parainfluenza virus 2 (Human rubulavirus 2)	HPIV2/Sea ttle/USA/S C9949/201 8	MN369034.1	40.91	59.09	50
Parainfluenza virus 3 (Human respirovirus 3)	NIV172171 1	MH330335.1	36.36	36.36	45
Parainfluenza virus 4a (Human rubulavirus 4a)	4a M-25	NC_021928.1	36.36	45.45	45
Influenza A	New York/392/ 2004(H3N 2)	NC_007373.1, NC_007372.1, NC_007371.1, NC_007366.1, NC_007369.1, NC_007368.1, NC_007367.1, NC_007370.1	40.91	40.91	50
Influenza B	B/Lee/194 0	NC_002205.1, NC_002206.1, NC_002207.1, NC_002208.1, NC_002209.1, NC_002210.1, NC_002211.1, NC_002204.1	40.91	63.64	45
Enterovirus (e.g. EV68)	coxsackiev irus B1	NC_001472.1	40.91	36.36	40
Respiratory syncytial virus	V13-0285	NC_030454.1	45.45	45.45	40
Rhinovirus	ATCC VR- 1559	NC_038311.1	36.36	45.45	40
Chlamydia pneumonia	CWL029	NC_000922.1	63.64	59.09	65

For the Better	苏州	新波生	主物技	术有	限公	司
	· • / •					-

Haemophilus	Bd KW/20	NC 000907 1	54 55	54 55	65
influenzae		110_000507.1	54.55	54.55	
Legionella	Philadelphi	NC_002942.5	59.09	59.09	65
pneumophila	a 1				
Mycobacterium tuberculosis	H37Rv	NC_000962.3	54.55	50.00	70
Streptococcus					
pneumoniae	R6	NC_003098.1	68.18	54.55	60
Streptococcus	M1 GAS	NC 002737 2	54 55	59.09	85
pyogenes		110_002737.2	54.55	55.05	0.5
Bordetella	Tohama I	NC 002929.2	63.64	68.18	65
pertussis		_			
Mycoplasma	M129	NC_000912.1	50.00	54.55	60
pneumoniae					
iirovosii	RU7	NW_017264775.1	68.18	54.55	65
Gandida albicans	\$C5314	NC 032089 1	50.00	50.00	75
Regudomongs	303314	NC_032089.1	59.09	59.09	75
aeruainosa	PAO1	NC_002516.2	59.09	50	65
		NC 006312.2,			
		 NC_006310.2,			
	C/Ann	NC_006309.2,			
Influenza C	Arbor/1/5	NC_006307.2,	40.91	45.46	40.00
	0	NC_006308.2,			
		NC_006306.2,			
		NC_006311.1			
Parechovirus	echovirus	NC 0383191	45 46	45 46	50.00
	22 EV22				
Corynebacterium	NCTC1139	NZ LN831026.1	54.55	59.10	75.00
diphtheriae	7	_			
Legionella	ATCC	NZ_LN614830.1	54.55	59.10	65.00
micdadei	33218				
Bacillus	Ames	NC_007530.2	59.10	59.10	65.00
Margyalla	Ancestor				
cararrhalis	BBH18	NC_014147.1	54.55	59.10	65.00
curunnuns					

Neisseria elongate	ATCC	N7 CD007726 1			60.00	
and miningitidis	29315	NZ_CP007720.1	54.55	54.55	60.00	
Staphylococcus	ATCC	NC 004461 1	5455			
epidermis	12228	NC_004461.1	54.55	54.55	55.00	
Lontocnirocic	serovar Lai	NC_004342.2	62.64	F0 10	65.00	
Leptospirosis	str. 56601	NC_004343.2	03.04	59.10	05.00	
Chlamydia psittaci	6BC	NC_017287.1	54.55	50.00	60.00	
Coxiella burneti	Dugway	NC 000727.1			65.00	
(QFever).	5J108-111	NC_009727.1	54.55	54.55	00.00	

Table 21: The %Homology of ORF1ab primers and probe.

	Churche		%Homology	%Homology	%Homology	
Dethermo		Can Dank Asall	of ORFlab	of ORFlab	of	
Pathogen	Strain	GenBank Acc#	forward	reverse	ORFlab	
			primer	primer	probe	
Human	2225	NO. 000545.4	47.60	47.07	05.74	
coronavirus 229E	229E	NC_002645.1	47.62	47.37	35.71	
Human	ATCC VR-	NC 000212.1	61.00	47.27	20.20	
coronavirus OC43	759	NC_006213.1	61.90	47.37	39.29	
Human	HCoV-	NC 000577.2	47.02	62.16	25 71	
coronavirus HKU1	HKU1	NC_006577.2	47.62	63.16	35./1	
Human	NH 62	NC 005034 3	47.62	47.27	25 71	
coronavirus NL63	NL63	NC_005831.2	47.62	47.37	JJ./ I	
NA (iso		NC 004718 2	00.48	F2 62	06.42	
SARS-COLONAVITUS	"Tor2")	NC_004718.3	90.48	52.03	50.45	
Pat coronavirus	bat-SL-	MC772022 1	04.44	E7 80	96.43	
Bat coronavirus	CoVZC45	MG772955.1	94.44	57.69		
MERS-coronavirus	NL140455	MG987421.1	42.86	47.37	60.71	
Adenovirus (e.g.	tuno 2	101017 1	47.62	62.16	2E 71	
C1 Ad. 71)	type z	J01917.1	47.02	05.10	55.71	
Human						
Metapneumovirus	CAN97-83	NC_039199.1	52.38	47.37	32.14	
(hMPV)						
Darainfluonza	HPIV1/Los					
	_Angeles/	N4//4 C 70 4 2 4	52.20	42.44	28.57	
virus I (Human	USA/CHLA	IVIK107043.1	52.38	42.11		
respirovirus 1)	36/2016					

Parainfluenza virus 2 (Human rubulavirus 2)	HPIV2/Sea ttle/USA/S C9949/201 8	MN369034.1	47.62	47.37	28.57
Parainfluenza virus 3 (Human respirovirus 3)	NIV172171 1	MH330335.1	42.86	42.11	28.57
Parainfluenza virus 4a (Human rubulavirus 4a)	4a M-25	NC_021928.1	42.86	52.63	32.14
Influenza A	New York/392/ 2004(H3N 2)	NC_007373.1, NC_007372.1, NC_007371.1, NC_007366.1, NC_007369.1, NC_007368.1, NC_007367.1, NC_007370.1	38.10	52.63	32.14
Influenza B	B/Lee/194 0	NC_002205.1, NC_002206.1, NC_002207.1, NC_002208.1, NC_002209.1, NC_002210.1, NC_002211.1, NC_002211.1,		47.37	46.43
Enterovirus (e.g. EV68)	coxsackiev irus B1	NC_001472.1	47.62	36.84	35.71
Respiratory syncytial virus	V13-0285	NC_030454.1	47.62	47.37	32.14
Rhinovirus	ATCC VR- 1559	NC_038311.1	38.10	52.63	42.86
Chlamydia pneumonia	CWL029	NC_000922.1	57.14	63.16	42.86
Haemophilus influenzae	Rd KW20	NC_000907.1	57.14	63.16	53.57
Legionella pneumophila	Philadelphi a 1	NC_002942.5	61.9	68.42	42.86

▶ PerkinElmer ⁱ 苏州新波生物技术有限公司									
Mycobacterium tuberculosis	H37Rv	NC_000962.3	52.38	68.42	53.57				
Streptococcus pneumoniae	R6	NC_003098.1	71.43	63.16	42.86				
Streptococcus pyogenes	M1 GAS	NC_002737.2	57.14	68.42	42.86				
Bordetella pertussis	Tohama I	NC_002929.2	52.38	68.42	57.14				
Mycoplasma pneumoniae	M129	NC_000912.1	57.14	57.89	46.43				
Pneumocystis jirovecii	RU7	NW_017264775.1	66.67	78.95	50.00				
Candida albicans	SC5314	NC_032089.1	61.9	68.42	50.00				
Pseudomonas aeruginosa	PAO1	NC_002516.2	52.38	63.16	46.43				
Influenza C	C/Ann Arbor/1/5 0	NC_006312.2, NC_006310.2, NC_006309.2, NC_006307.2, NC_006308.2, NC_006306.2, NC_006311.1	47.62	47.37	35.71				
Parechovirus	echovirus 22 EV22	NC_038319.1	38.10	42.11	28.57				
Corynebacterium diphtheriae	NCTC1139 7	NZ_LN831026.1	57.14	68.42	46.43				
Legionella micdadei	ATCC 33218	NZ_LN614830.1	57.14	68.42	46.43				
Bacillus anthracosis	Ames Ancestor	NC_007530.2	61.90	68.42	46.43				
Moraxella cararrhalis	BBH18	NC_014147.1	66.67	68.42	39.29				
Neisseria elongate and miningitidis	ATCC 29315	NZ_CP007726.1	57.14	63.16	46.43				
Staphylococcus epidermis	ATCC 12228	NC_004461.1	61.90	63.16	46.43				

l t i i -	serovar Lai	NC_004342.2		62.16	50.00	
Leptospirosis	str. 56601	NC_004343.2	66.67	63.16	50.00	
Chlamydia psittaci	6BC	NC_017287.1	61.90	68.42	42.86	
Coxiella burneti	Dugway	NC 000727.1	F7 14	62.16		
(QFever).	5J108-111	NC_009727.1	57.14	03.10	53.57	

Wet testing against normal and pathogenic organisms of the respiratory tract was performed to confirm the results of the *in silico* analysis.

To test the effect of microorganisms on the assay result, each organism listed in table 22 was spiked into SARS-CoV-2 positive and negative samples at concentrations indicated in table 22. The concentrations of microorganisms are at clinically relevant concentrations or the highest available concentrations in the lab. SARS-CoV-2 positive samples contain 60 copies/ml of encapsulated SARS-CoV-2 ORF1ab and N RNA to represent clinically low positive samples (clinical sample viral loads range from 10² copies/ml to 10⁹ copies/ml)^[5, 6]. The samples were extracted using PerkinElmer[®] Nucleic Acid Extraction Kit (KN0212) on Pre-NAT II and tested using the PerkinElmer[®] SARS-CoV-2 Real-time RT-PCR Assay. Cross-reactivity study was conducted according to CLSI guideline EP07^[3] with slight modifications. Three lots of reagent were used in these tests to better evaluate the assay specificity, and one sample for each condition was tested using each lot of reagent to reduce the runs and generate data to rapidly support combating the pandemic. Results are summarized in table 23.

Pathogen	Source	Conce	entration
Coronavirus 229E	ATCC VR-740™	2.8 x 10 ²	TCID ₅₀ /mL
Coronavirus OC43	ATCC VR-1558™	2.8 x 10 ³	TCID ₅₀ /mL
Adenovirus type 3	ATCC VR-847™	5.0 x 10 ^{5.5}	TCID ₅₀ /mL
Adenovirus type 2	ATCC VR-846™	5.6 x 10 ⁴	TCID ₅₀ /mL
Adenovirus type 31	ATCC VR-1109™	1.6 x 10 ⁶	TCID ₅₀ /mL
Adenovirus type 37	ATCC VR-929™	1.8 x 10 ⁴	TCID₅₀/mL
Adenovirus type 51	ATCC VR-1603™	2.3 x 10 ⁶	TCID ₅₀ /mL
Enterovirus A71	ATCC VR-1432™	5.0 x 10 ^{5.5}	TCID ₅₀ /mL
Enterovirus D68	ATCC VR-1823™	1.6 x 10 ⁶	TCID ₅₀ /mL
Influenza A virus (H3N2)	ATCC VR-1679™	5.0 x 10 ^{3.5}	TCID₅₀/mL
Influenza B virus	ATCC VR-1807™	7.6 x 10 ²	PFU/mL
Influenza A virus (H1N1pdm09)	ATCC VR-1736™	2.6 x 10 ³	PFU/mL
Influenza A virus (seasonal H1N1)	ATCC VR-1520™	5.0 x 10 ^{4.5}	TCID₅₀/mL
Respiratory syscytial virus	ATCC VR-1400™	5.0 x 10 ^{3.5}	TCID ₅₀ /mL
Parainfluenza virus type 1	ATCC VR-94™	2.8 x 10 ⁴	TCID ₅₀ /mL

Table 22: Potential	cross-reactivity	panel tested.
	cross reactivity	paner testea

PerkinElmer"苏州新波生物技术有限公司

Chlamydophila pneumoniae	ATCC 53592™	2.9 x 10⁵	IFU/mL
Mycoplasma pneumoniae	ATCC 15531™	3.5 x 10 ⁶	CFU/mL
Haemophilus influenzae	ATCC 51907D™	10	µg/mL
Streptococcus pyogenes	ATCC 700294D-5™	7	µg/mL
Streptococcus salivarius	ATCC BAA-250D-5™	5.2	µg/mL
Rhinovirus B17	ATCC VR-1663™	2.0 x 10 ⁶	PFU/mL
Rhinovirus A2	ATCC VR-482™	8.9 x 10 ⁴	TCID ₅₀ /mL
Measles virus		kown	
Mumps virus		Un	kown
Staphylococcus aureus	Acids Detection Kit	Un	kown
Influenza A virus (H7N9)	Acids Detection Nit	Un	kown
hepatitis B virus	WHO NIBSC 10/266	9.55E+05	IU/mL
hepatitis c virus	WHO NIBSC 14/150	1.00E+05	IU/mL
HIV-1	WHO NIBSC 16/194	1.26E+05	IU/mL
HIV-2	WHO NIBSC 08/150	1.00E+03	IU/mL
Hepatitis A virus	Clinical specimen	1.84E+05	copies/mL
Epstein-barr virus	Clinical specimen	1.46E+05	copies/mL
Cytomegalovirus	Clinical specimen	1.15E+04	copies/mL
Herpes simplex virus type I	Pasteur	5.71E+04	copies/mL
Herpes simplex virus type II	Zeptometrix	9.01E+05	copies/mL
SARS (Plasmid)	BIOLIGO	1.00E+05	copies/mL
MERS (Plasmid)	BIOLIGO	1.00E+05	copies/mL

Lot	Lot1 (AY20200202)			Lot2 (AY20200203)				Lot3 (AY20200204)				
Date		07/Fe	b/2020		09/Feb/2020 11/Feb/202				o/2020	020		
Nama	Negat	ive (Ct)	Postive (Ct)		Nega	tive (Ct)	Post	ive (Ct)	Nega	tive (Ct)	Postive (Ct)	
Name	N	ORF1ab	N	ORF1ab	N	ORF1ab	N	ORF1ab	N	ORF1ab	N	ORF1ab
SARS (Plasmid)	Undet	Undet	37.30	37.10	Undet	Undet	37.74	37.99	Undet	Undet	37.55	36.64
MERS (Plasmid)	Undet	Undet	37.71	36.65	Undet	Undet	38.19	36.67	Undet	Undet	38.55	35.56
Coronavirus 229E	Undet	Undet	37.00	36.68	Undet	Undet	38.91	35.57	Undet	Undet	37.10	37.80
Coronavirus OC43	Undet	Undet	37.84	35.09	Undet	Undet	36.65	36.15	Undet	Undet	36.87	35.89
Adenovirus type 2	Undet	Undet	37.33	36.02	Undet	Undet	36.45	35.87	Undet	Undet	37.42	34.85
Adenovirus type 3	Undet	Undet	37.66	36.90	Undet	Undet	37.28	36.67	Undet	Undet	37.94	36.31
Adenovirus type 31	Undet	Undet	38.21	36.78	Undet	Undet	36.33	36.17	Undet	Undet	37.32	36.81
Adenovirus type 37	Undet	Undet	37.63	37.43	Undet	Undet	36.56	37.38	Undet	Undet	36.94	33.40
Adenovirus type 51	Undet	Undet	37.15	36.65	Undet	Undet	37.37	36.20	Undet	Undet	37.73	36.42
Enterovirus A	Undet	Undet	37.12	37.31	Undet	Undet	36.02	37.03	Undet	Undet	36.78	35.89
Enterovirus D	Undet	Undet	37.58	36.56	Undet	Undet	37.07	36.24	Undet	Undet	37.63	36.80
Rhinovirus A	Undet	Undet	37.27	35.61	Undet	Undet	35.76	36.97	Undet	Undet	36.72	36.78
Rhinovirus B	Undet	Undet	36.73	34.79	Undet	Undet	36.39	36.53	Undet	Undet	36.63	35.99
Influenza A virus	Undet	Undet	37.82	36.04	Undet	Undet	36.48	37.12	Undet	Undet	37.46	37.11
Influenza B virus	Undet	Undet	37.16	36.33	Undet	Undet	37.02	37.40	Undet	Undet	36.79	36.35
Influenza A (H1N1pdm09)	Undet	Undet	37.25	36.27	Undet	Undet	36.61	35.91	Undet	Undet	38.06	36.41
Influenza A (seasonal H1N1)	Undet	Undet	37.84	37.83	Undet	Undet	37.26	37.66	Undet	Undet	36.87	32.32

Table 23: Results of potential cross-reactivity study.

Respiratory syscytial virus	Undet	Undet	38.08	36.06	Undet	Undet	36.59	36.66	Undet	Undet	37.64	37.51
Parainfluenza virus	Undet	Undet	36.74	36.03	Undet	Undet	36.16	36.60	Undet	Undet	37.60	36.31
Measles virus	Undet	Undet	37.41	35.78	Undet	Undet	35.75	35.78	Undet	Undet	36.63	37.14
Mumps virus	Undet	Undet	37.02	37.18	Undet	Undet	36.36	36.43	Undet	Undet	37.43	37.74
Mycoplasma pneumoniae	Undet	Undet	38.46	35.85	Undet	Undet	36.58	36.35	Undet	Undet	38.69	36.07
Chlamydophila pneumoniae	Undet	Undet	37.35	35.97	Undet	Undet	35.97	37.37	Undet	Undet	37.60	36.83
Haemophilus influenzae	Undet	Undet	37.97	37.05	Undet	Undet	36.45	36.51	Undet	Undet	37.99	36.11
Staphylococcus aureus	Undet	Undet	37.40	36.39	Undet	Undet	36.17	36.22	Undet	Undet	36.69	36.70
Streptococcus pyogenes	Undet	Undet	38.80	36.54	Undet	Undet	36.73	36.39	Undet	Undet	36.96	36.39
Streptococcus salivarius	Undet	Undet	37.05	35.79	Undet	Undet	36.25	36.50	Undet	Undet	37.03	36.18
Hepatitis A virus	Undet	Undet	38.23	36.98	Undet	Undet	35.54	36.60	Undet	Undet	37.03	38.54
Hepatitis B virus	Undet	Undet	37.17	36.70	Undet	Undet	38.71	36.36	Undet	Undet	37.91	37.27
Hepatitis C virus	Undet	Undet	37.70	35.95	Undet	Undet	37.73	36.33	Undet	Undet	36.95	37.05
Cytomegalovirus	Undet	Undet	36.97	37.11	Undet	Undet	36.77	35.94	Undet	Undet	37.21	37.96
Epstein-barr virus	Undet	Undet	37.15	36.07	Undet	Undet	36.24	36.88	Undet	Undet	37.07	36.77
Herpes simplex virus type I	Undet	Undet	37.25	35.19	Undet	Undet	36.23	35.75	Undet	Undet	38.36	36.87
Herpes simplex virus type II	Undet	Undet	37.40	35.61	Undet	Undet	36.17	35.69	Undet	Undet	37.08	35.70
HIV-1	Undet	Undet	37.53	35.91	Undet	Undet	36.45	36.32	Undet	Undet	37.25	35.93
HIV-2	Undet	Undet	37.78	35.10	Undet	Undet	36.00	36.10	Undet	Undet	37.72	36.88
Influenza A virus (H7N9)	Undet	Undet	38.33	36.20	Undet	Undet	35.74	36.66	Undet	Undet	36.82	36.72

From the cross-reactivity results summarized in table 23, it is verified that the PerkinElmer® SARS-CoV-2 Real-time RT-PCR Assay does not exhibit cross-reactivity to the microorganisms listed in table 22. It is expected to have cross-reactivity study also conducted on human coronavirus HKU1, human coronavirus HL63, alpha coronaviruses, fungi, mollicutes, human metapneumovirus (HMPV), protozoa, respiratory actinomycetes and other rhinoviruses, however, it may depend on the availability of these microorganisms. Nevertheless, the *in silico* analysis results showed in 19 and 20 suggest that theoretically there is low chance of cross-reactivity between the assay and these microorganisms.

3.3.3 Interfering Substances Studies

To test the effect of potential endogenous and exogenous interfering substances on the assay result, the common interfering substances listed in table 24 was added into SARS-CoV-2 positive and negative samples at concentrations indicated in table 24. The drug interfering substances were supplemented at concentrations that are three folds of the highest concentration observed during therapeutic drug treatment, and the other interfering substances were supplemented at clinically relevant concentrations. SARS-CoV-2 positive samples contain 60 copies/ml of encapsulated SARS-CoV-2 ORF1ab and N RNA to represent clinically low positive samples (clinical sample viral loads range from 10² copies/ml to 10⁹ copies/ml) ^[5, 6]. The samples were extracted using PerkinElmer[®] Nucleic Acid Extraction Kit (KN0212) on Pre-NAT II and tested using the PerkinElmer[®] SARS-CoV-2 Real-time RT-PCR Assay. Interfering substance study was conducted according to CLSI guideline EP07 ^[3] with slight modifications. Three lots of reagent were used in these tests to better evaluate the assay specificity, and one sample for each condition was tested using each lot of reagent to reduce the runs and generate data to rapidly support combating the pandemic. Results are summarized in table 25.

Interfering substances	Tested	Interfering substances	Tested
	concentration		concentration
Valacyclovir	3.6mg/mL	Clarithromycin	30µg/mL
Entecavir	24.6ng/mL	Ciprofloxacin	7.5µg/mL
Adefovir	90ng/mL	Telbivudine	15μg/mL
Ribavirin	5mg/mL	Efavirenz	12.2µg/mL
Acyclovir	3.6mg/mL	Tenofovirdisoproxil	1335ng/mL
Azithromycin	1.35mg/mL	Tobramycin	0.6 mg/mL
Fluticasone propionate	1 mg/mL	Oxymetazoline hydrochloride	15% v/v
Normal saline NS	1 mg/mL	Sulphur	0.05% v/v
Beclomethasone dipropionate	22.5 μg/mL	Pharyngitis lozenges	0.05% v/v
Dexamethasone Acetate	375 μg/mL	Benzocaine	1.25 mg/mL
Flunisolide	20 mg/mL	Menthol	5% v/v
Triamcinolone	25 μg/mL	Relenza (Zanamivir)	5 mg/mL
Budesonide	16.7 μg/mL	Mupirocin	0.02% w/v
Mometasone furoate	41.7 μg/mL	Hemoglobin	5mg/ml
Human genome DNA	3mg/L	Bilirubin	0.6mg/ml
Theumatoid factor	unknown	Triglyceride	25mg/ml
Autoantibody	unknown	Human Serum Albumin	60mg/mL
Antinuclear antibody	unknown	Sputum	5% V/V
Mucin	0.1mg/ml	Blood	1% V/V
Tamiflu (oseltamivir)	1.7 μg/mL	Alpivab (peramivir)	45ng/ml
Amantadine	75ng/ml		

Table 24: Potential interfering substances tested.

Lot	Lot1 (AY20200202)			Lot2 (AY20200203)				Lot3 (AY20200204)				
Date		07/Fel	b/2020		09/Feb/2020 11/Fe			11/Feb	o/2020			
Nama	Negat	ive (Ct)	Post	ive (Ct)	Nega	Negative (Ct) Postive (Ct)			Negative (Ct) Postive		ive (Ct)	
Name	N	ORF1ab	N	ORF1ab	N	ORF1ab	N	ORF1ab	N	ORF1ab	N	ORF1ab
Theumatoid factor	Undet	Undet	39.03	36.08	Undet	Undet	36.28	36.48	Undet	Undet	39.31	35.74
Autoantibody	Undet	Undet	37.58	35.81	Undet	Undet	36.10	37.58	Undet	Undet	36.51	35.37
Antinuclear antibody	Undet	Undet	38.13	37.19	Undet	Undet	35.37	35.83	Undet	Undet	37.09	37.23
Hemoglobin	Undet	Undet	37.71	36.76	Undet	Undet	35.89	36.03	Undet	Undet	37.97	36.17
Bilirubin	Undet	Undet	37.32	36.04	Undet	Undet	37.43	35.81	Undet	Undet	38.53	36.15
Human Serum Albumin	Undet	Undet	37.76	36.31	Undet	Undet	35.94	36.69	Undet	Undet	37.91	36.11
Triglyceride	Undet	Undet	36.49	35.47	Undet	Undet	36.11	36.20	Undet	Undet	36.74	36.22
Human genome DNA	Undet	Undet	37.58	36.58	Undet	Undet	36.75	36.44	Undet	Undet	38.90	36.52
Valacyclovir	Undet	Undet	37.47	36.31	Undet	Undet	36.20	37.16	Undet	Undet	37.08	36.69
Entecavir	Undet	Undet	38.15	35.78	Undet	Undet	38.54	36.73	Undet	Undet	37.48	35.68
Adefovir	Undet	Undet	37.64	36.99	Undet	Undet	36.23	35.68	Undet	Undet	37.38	35.66
Ribavirin	Undet	Undet	37.44	35.91	Undet	Undet	37.01	36.09	Undet	Undet	37.37	37.39
Acyclovir	Undet	Undet	38.14	35.55	Undet	Undet	39.34	36.12	Undet	Undet	37.15	37.10
Azithromycin	Undet	Undet	36.97	36.14	Undet	Undet	37.22	36.81	Undet	Undet	38.20	36.65
Clarithromycin	Undet	Undet	36.83	36.30	Undet	Undet	36.35	36.33	Undet	Undet	37.27	36.89
Ciprofloxacin	Undet	Undet	37.60	35.38	Undet	Undet	35.96	37.41	Undet	Undet	37.91	37.37
Telbivudine	Undet	Undet	37.98	36.63	Undet	Undet	36.62	36.18	Undet	Undet	37.31	35.71
Efavirenz	Undet	Undet	37.89	36.66	Undet	Undet	36.65	35.99	Undet	Undet	38.09	37.79
Tenofovirdisoproxil	Undet	Undet	38.17	37.80	Undet	Undet	37.30	36.27	Undet	Undet	36.73	36.69
Normal saline NS	Undet	Undet	37.80	35.59	Undet	Undet	36.69	36.19	Undet	Undet	37.45	36.74
Beclomethasone dipropionate	Undet	Undet	37.23	35.56	Undet	Undet	36.29	38.17	Undet	Undet	37.01	36.65
Dexamethasone Acetate	Undet	Undet	37.24	35.97	Undet	Undet	36.82	36.47	Undet	Undet	37.02	36.79
Flunisolide	Undet	Undet	37.88	36.05	Undet	Undet	36.97	36.05	Undet	Undet	37.46	37.45

Table 25: Results of interfering substance study.

Triamcinolone	Undet	Undet	37.64	35.72	Undet	Undet	36.51	35.99	Undet	Undet	36.70	35.67
Budesonide	Undet	Undet	38.16	36.20	Undet	Undet	37.69	36.25	Undet	Undet	37.43	36.37
Mometasone furoate	Undet	Undet	37.89	36.52	Undet	Undet	36.44	36.25	Undet	Undet	38.05	37.95
Fluticasone propionate	Undet	Undet	37.69	36.57	Undet	Undet	36.53	37.24	Undet	Undet	36.89	36.65
Oxymetazoline hydrochloride	Undet	Undet	36.70	35.85	Undet	Undet	35.86	36.29	Undet	Undet	38.10	37.21
Sulphur	Undet	Undet	36.75	35.87	Undet	Undet	37.03	37.25	Undet	Undet	37.86	36.75
Pharyngitis lozenges	Undet	Undet	38.01	35.49	Undet	Undet	36.54	36.81	Undet	Undet	37.03	37.01
Benzocaine	Undet	Undet	37.50	35.88	Undet	Undet	36.99	35.90	Undet	Undet	37.20	35.94
Menthol	Undet	Undet	37.64	36.81	Undet	Undet	36.46	36.13	Undet	Undet	37.02	35.89
Relenza (Zanamivir)	Undet	Undet	38.18	35.73	Undet	Undet	36.76	36.08	Undet	Undet	37.42	36.01
Mupirocin	Undet	Undet	37.62	36.47	Undet	Undet	37.30	36.39	Undet	Undet	36.67	36.53
Tobramycin	Undet	Undet	38.09	36.20	Undet	Undet	36.01	35.57	Undet	Undet	37.45	35.85
Sputum*	Undet	Undet	36.34	36.17	Undet	Undet	36.32	36.60	Undet	Undet	36.51	36.68
Mucin*	Undet	Undet	36.13	35.67	Undet	Undet	37.03	35.43	Undet	Undet	37.14	35.71
Blood*	Undet	Undet	37.64	35.34	Undet	Undet	37.14	36.39	Undet	Undet	36.47	35.73
Tamiflu (oseltamivir) *	Undet	Undet	36.21	37.00	Undet	Undet	37.32	36.58	Undet	Undet	36.53	36.15
Alpivab (peramivir) *	Undet	Undet	37.30	36.03	Undet	Undet	37.29	37.80	Undet	Undet	36.86	36.43
Amantadine*	Undet	Undet	37.50	36.21	Undet	Undet	36.60	36.32	Undet	Undet	36.99	36.52

*: The results were got after 1st Technical Documentation (TD) gap review by Emergo.

From the interfering substance study results summarized in table 25, the positive samples spiked with interfering substances listed in table 24 all showed positive results, and the negative samples spiked with interfering substances listed in table 24 all showed negtive results, indicating that the performance of the PerkinElmer[®] SARS-CoV-2 Real-time RT-PCR Assay is not affected by these interfering substances.

4. Precision

4.1 Precision Study on PreNat II

4.1.1 Precision Experimental Design

The Precision study was designed according to CLSI guideline EP05-A3 ^[4]. Considering the urgent needs for COVID-19 assay, a 5-day precision study protocol was used and designed specifically as described in figure 1.

Figure 1: Diagrams of precision study design.

4.1.2 Instruments and Reagents

RNA extraction:

- PerkinElmer[®] Nucleic Acid Extraction Kit (KN0212)
- PerkinElmer[®] Pre-NAT II Automated Workstation

PCR:

- PerkinElmer[®] SARS-CoV-2 Real-time RT-PCR Assay (2019-nCoV-PCR-AUS)
- Applied Biosystems[™] 7500 Real-Time PCR System

Note: for equipment ID #s, reagent batch lot information, test dates and personnel information, please see table 26.

4.1.3 Testing Sample

According to the recommendation in EP05-A3^[4], three samples, one negative and two positive samples representing low and moderated clinical specimens are tested for assay precision evaluation. At the time this precision study was conducted in early February, the clinical viral loads of SARS-CoV-2 was unknown, and droplet digital PCR (ddPCR) quantification data on the encapsulated SARS-CoV-2 RNAs was also not available at that moment. To urgently generate performance data for customer's reference (during the COVID-19 epidemic in China), a dilution of encapsulated SARS-CoV-2 RNAs close to the assay LoD concentration was used to represent low positive clinical specimen and 10x of this concentration was used to represent moderate positive clinical specimen. The concentrations were subsequently determined using ddPCR to be 140 copies/ml and 1400 copies/ml. As the publishing of studies on SARS-CoV-2 viral loads in clinical upper respiratory track specimens in the past a few months, it was known that SARS-CoV-2 exists in patient specimens ranging from 10² copies/ml to 10⁹ copies/ml ^[5, 6]. This verified that the concentrations used in the precision study can well represent clinical low and moderate positive specimens.

- Negative sample was prepared by pooling negative oropharyngeal swabs in virus transport medium (VTM);
- Low positive sample was prepared by spiking encapsulated RNA (SARS-CoV-2 N and ORF1ab) into negative oropharyngeal swab matrix at 140 copies/ml (approximately 5x LoD concentration according to LoD determined using SARS-CoV-2 isolate which was generated after this precision study);
- Moderate positive sample was prepared by spiking encapsulated RNA (SARS-CoV-2 N and ORF1ab) into negative oropharyngeal swab matrix at 1400 copies/ml (approximately 50x LoD concentration according to LoD determined using SARS-CoV-2);
- 4.1.4 Acceptance Criteria
 - a. Negative samples should all show negative results.
 - b. Positive samples should all show positive results and the Coefficient of Variance (CV) of positive samples' Ct values should be \leq 5%.

4.1.5 Testing Plan

The detailed testing plan including instruments and labs is listed in table 26.

Testing p	Testing personnel: Chunhua Zhu										
Lot AY20	200202 t	ested at R&D T	esting Lab 1	Lot AY20	200203 t	tested at R&D T	esting Lab 2	Lot AY20	200204 t	ested at R&D N	1Dx Lab
(Date, Ru	un, Equip	. Desc., Equipm	ent ID#)	(Date, Ru	ın, Equip	. Desc., Equipm	ent ID#)	(Date, Ru	ın, Equip	. Desc., Equipm	ent ID#)
	Run1	Pre-NAT II	SB-RD391		Run1	Pre-NAT II	SB-RD478		Run1	Pre-NAT II	SB-RD391
06/Feb	Kuni	ABI7500	SB-RD387	08/Feb	Kuni	ABI7500	SB-RD403	10/Feb	Kulli	ABI7500	SB-RD403
/2020	Pup?	Pre-NAT II	SB-RD391	/2020	Pup?	Pre-NAT II	SB-RD478	/2020	Pup?	Pre-NAT II	SB-RD391
	Kuliz	ABI7500	SB-RD403		Kuliz	ABI7500	SB-RD403		Kuliz	ABI7500	SB-RD403
	Pup1	Pre-NAT II	SB-RD391		Pup1	Pre-NAT II	SB-RD478		Pup1	Pre-NAT II	SB-RD391
07/Feb	Kulli	ABI7500	SB-RD387	09/Feb	KUIII	ABI7500	SB-RD403	11/Feb	KUIII	ABI7500	SB-RD387
/2020	Dun2	Pre-NAT II	SB-RD391	/2020	Dun2	Pre-NAT II	SB-RD478	/2020	Dun 2	Pre-NAT II	SB-RD391
	Runz	ABI7500	SB-RD387		Ruliz	ABI7500	SB-RD403	1	KUIIZ	ABI7500	SB-RD387
	Pup1	Pre-NAT II	SB-RD391		Pup1	Pre-NAT II	SB-RD478		Pup1	Pre-NAT II	SB-RD391
08/Feb	Kulli	ABI7500	SB-RD387	10/Feb	Kulli	ABI7500	SB-RD403	12/Feb	Kulli	ABI7500	SB-RD387
/2020	Dun2	Pre-NAT II	SB-RD391	/2020	Dun2	Pre-NAT II	SB-RD478	/2020	Dun 2	Pre-NAT II	SB-RD391
	Runz	ABI7500	SB-RD387		Kuliz	ABI7500	SB-RD403		KUIIZ	ABI7500	SB-RD387
	Pup1	Pre-NAT II	SB-RD391		Pup1	Pre-NAT II	SB-RD478		Pup1	Pre-NAT II	SB-RD391
09/Feb	Kulli	ABI7500	SB-RD387	11/Feb	Kulli	ABI7500	SB-RD403	13/Feb	Kulli	ABI7500	SB-RD387
/2020	Dun2	Pre-NAT II	SB-RD391	/2020	Dun 2	Pre-NAT II	SB-RD478	/2020	Dun 2	Pre-NAT II	SB-RD391
	Kuliz	ABI7500	SB-RD387		Kuliz	ABI7500	SB-RD403		Kuliz	ABI7500	SB-RD387
	Pup1	Pre-NAT II	SB-RD391	12/Feb	Pup1	Pre-NAT II	SB-RD478	14/Feb	Pup1	Pre-NAT II	SB-RD391
10/Feb	Nulli	ABI7500	SB-RD403	/2020	Nulli	ABI7500	SB-RD403	/2020	NUIL	ABI7500	SB-RD387

Table 26: Testing plan for precision study on Pre-NAT II.

PerkinElmer 苏州新波生物技术有限公司

/2020	Run2	Pre-NAT II	SB-RD391	Run2	Pre-NAT II	SB-RD478	Run2	Pre-NAT II	SB-RD391
		ABI7500	SB-RD387	nanz	ABI7500	SB-RD403		ABI7500	SB-RD387

Remarks:

1) As Pre-NAT II instrument conducts nucleic acid extraction and PCR mix preparation automatically, there is only very limited manual handling in the whole assay procedure, testing personal is a relatively less important impact factor for assay precision than the instruments, therefore only one testing personal is involved in the precision study.

2) all PCR instruments are in the same PCR lab for the purpose of preventing PCR amplicon contamination.

3) Pre-NAT II SB-RD391 was moved from R&D Testing Lab 1 into R&D MDx Lab for reagent lot AY20200204 testing.

4.1.6 Testing Results

The test results (Ct values) from all samples are summarized in table 27-29.

Table 27: Ct values of samples tested using reagent lot AY20200202 on Pre-NAT II	Table 27:	Ct values of samples tested using reagent lot AY20200202 on Pre-NAT II.
--	-----------	---

L	ot	AY20200202								
Concer	ntration	Mo	derate p	ositive	L	ow posit	tive		Negat	ive
_	Runs					Ct				
Days	Target	IC	N	ORF1ab	IC	N	ORF1ab	IC	N	ORF1ab
		34.73	32.65	31.74	34.36	35.67	34.50	34.28	NA	NA
	run 1	34.70	32.70	31.63	34.52	35.97	35.34	34.77	NA	NA
	1 un 1	34.54	32.44	31.62	34.73	35.78	35.02	34.39	NA	NA
Day 1		34.50	32.39	31.57	34.59	36.66	34.91	35.62	NA	NA
Duyi		35.01	32.11	31.89	34.61	35.35	35.16	34.88	NA	NA
	run 2	34.67	31.83	31.81	34.76	35.21	35.13	34.57	NA	NA
		34.28	31.65	31.80	34.81	35.09	34.68	34.10	NA	NA
		34.26	31.37	31.57	35.02	35.27	34.84	34.15	NA	NA
		34.29	32.58	31.75	34.36	35.43	35.96	34.24	NA	NA
	run 1	33.80	31.98	31.31	34.37	35.41	34.71	34.23	NA	NA
	2	34.59	32.33	31.63	34.66	36.03	35.16	33.96	NA	NA
Day 2		34.71	32.53	31.69	34.51	36.38	34.83	33.85	NA	NA
Duyz		35.06	32.58	32.23	34.91	36.24	34.33	34.30	NA	NA
	run 2	34.94	32.64	31.65	34.66	35.76	35.11	34.52	NA	NA
	14112	34.91	32.73	31.51	34.66	35.72	34.30	34.32	NA	NA
		34.99	32.70	31.66	34.43	35.82	34.79	34.50	NA	NA
		35.24	31.72	32.42	35.03	35.28	35.55	34.98	NA	NA
	run 1	35.09	31.37	32.00	35.64	35.07	36.05	34.43	NA	NA
	1 un 1	34.82	31.51	31.85	35.55	35.41	34.94	34.38	NA	NA
Day 3		34.69	31.38	31.80	35.74	35.23	35.99	34.30	NA	NA
Duys		35.61	32.21	32.18	36.15	36.21	36.21	34.63	NA	NA
	run 2	35.53	32.85	32.06	35.21	35.54	35.68	34.98	NA	NA
		35.65	32.70	32.51	35.30	35.79	35.69	35.41	NA	NA
		34.93	32.08	32.44	35.04	35.63	35.41	35.32	NA	NA
Day 4	run 1	35.93	32.85	32.97	35.22	36.71	35.81	34.28	NA	NA
Day 4	TUILT	35.61	32.79	32.35	35.16	36.69	36.21	34.77	NA	NA

Note: see table 26 for equipment, dates and personnel information.

		35.46	33.24	32.54	34.91	36.06	35.30	34.79	NA	NA
		35.86	33.37	32.69	35.10	35.69	34.76	34.97	NA	NA
		33.37	32.35	31.31	35.03	35.92	35.62	34.58	NA	NA
	run 2	35.71	33.14	32.21	34.64	36.25	36.00	34.96	NA	NA
		36.00	33.29	32.83	34.55	35.88	36.23	34.97	NA	NA
		36.29	33.34	33.05	34.50	35.80	35.42	35.54	NA	NA
		35.33	32.14	32.29	35.70	35.28	35.71	34.74	NA	NA
	run 1	35.03	31.66	32.01	35.74	35.66	36.22	34.60	NA	NA
		35.22	32.29	32.38	35.20	35.18	35.15	34.90	NA	NA
Day 5		35.31	32.29	32.46	35.89	36.15	35.86	34.63	NA	NA
		34.25	31.74	32.12	34.77	36.32	36.18	33.43	NA	NA
	run 2	34.23	31.81	32.02	34.97	35.87	35.55	33.41	NA	NA
		34.82	31.73	32.34	34.58	36.13	35.87	33.93	NA	NA
		34.13	31.52	32.12	34.39	35.83	35.09	33.88	NA	NA

Table 28: Ct values of samples tested using reagent lot AY20200203 on Pre-NAT II.

L	ot	AY20200203								
Conce	ntration	Mo	derate p	ositive	L	ow posit	tive		Negat	ive
	Runs					Ct				
Days	Target	IC	N	ORF1ab	IC	N	ORF1ab	IC	N	ORF1ab
		34.99	31.69	32.14	34.37	34.41	34.83	34.52	NA	NA
	run 1	34.67	31.41	31.93	34.61	34.67	34.80	33.84	NA	NA
		34.58	31.37	31.81	34.88	34.98	35.15	34.02	NA	NA
Day 1		34.12	31.27	31.52	34.85	34.48	35.03	33.99	NA	NA
		34.64	31.69	31.97	35.50	34.76	34.97	34.83	NA	NA
	run 2	34.58	31.28	32.03	35.13	34.63	34.90	34.54	NA	NA
		34.33	31.37	31.69	35.26	34.84	35.61	34.09	NA	NA
		34.17	31.42	31.08	34.92	34.60	35.32	34.61	NA	NA
		34.39	31.58	32.18	34.57	34.44	35.10	34.46	NA	NA
	run 1	34.12	31.24	31.96	35.06	34.82	36.36	34.72	NA	NA
		34.26	31.46	31.76	34.95	34.64	35.22	34.55	NA	NA
Dav 2		34.27	31.38	31.97	35.10	35.05	35.79	34.31	NA	NA
		35.38	32.28	32.70	34.02	34.56	35.96	35.03	NA	NA
	run 2	35.00	31.82	32.23	33.71	34.23	34.61	34.77	NA	NA
		34.86	31.41	31.87	36.10	35.04	36.12	34.17	NA	NA
		35.46	32.19	32.18	35.78	35.49	35.78	34.24	NA	NA
		34.19	31.67	32.30	34.58	35.20	36.06	33.44	NA	NA
	run 1	34.38	32.16	32.41	34.67	34.63	35.43	33.69	NA	NA
		34.41	32.12	32.34	34.61	34.63	35.27	33.84	NA	NA
Dav 3		34.32	32.44	32.61	34.06	35.28	35.61	33.70	NA	NA
,-		34.17	32.16	32.35	34.54	36.04	35.54	33.85	NA	NA
	run 2	34.06	31.54	32.31	34.67	35.73	35.46	33.62	NA	NA
		33.90	31.66	32.02	34.59	36.18	36.32	33.93	NA	NA
		33.87	31.67	32.27	34.76	35.21	35.78	33.98	NA	NA
Dav 4	run 1	34.43	32.06	32.32	34.94	35.92	35.89	33.39	NA	NA
,	run 1	33.43	31.56	32.11	34.81	35.23	36.09	33.95	NA	NA

Note: see table 26 for equipment, dates and personnel information.

		33.96	31.83	32.07	34.56	35.40	36.27	34.03	NA	NA
		33.85	31.80	32.08	35.02	35.85	36.41	33.88	NA	NA
		33.19	30.89	31.59	33.92	34.65	35.30	33.56	NA	NA
	run 2	32.93	31.18	31.20	34.29	35.28	35.80	33.90	NA	NA
		33.29	31.40	31.83	33.79	34.97	35.61	33.84	NA	NA
		32.91	31.14	31.53	33.86	35.21	35.53	33.82	NA	NA
		34.68	31.55	32.07	34.55	35.90	36.25	33.44	NA	NA
	run 1	34.50	31.89	32.11	34.97	35.13	36.50	33.58	NA	NA
		34.56	32.25	32.45	34.86	35.88	36.15	33.90	NA	NA
Day 5		34.55	32.04	32.51	34.78	35.16	36.21	33.90	NA	NA
		34.40	31.63	32.14	35.01	36.19	35.64	33.76	NA	NA
	run 2	33.64	31.27	32.15	34.71	35.31	35.74	33.80	NA	NA
		34.52	32.01	32.28	34.79	34.96	36.37	34.16	NA	NA
		34.39	31.67	32.24	34.68	35.50	35.26	33.87	NA	NA

Table 29: Ct values of samples tested using reagent lot AY20200204 on Pre-NAT II.

L	ot	AY20200204								
Concer	ntration	Mo	derate p	ositive	L	ow posit	tive		Negat	ive
	Runs					Ct				
Days	Target	IC	N	ORF1ab	IC	N	ORF1ab	IC	N	ORF1ab
		34.43	32.22	31.65	34.50	35.62	34.95	35.02	NA	NA
	run 1	34.15	32.24	31.86	34.85	35.41	35.03	34.80	NA	NA
		34.67	32.45	32.09	34.45	35.63	35.16	34.83	NA	NA
Day 1		34.81	32.41	31.77	34.39	35.23	34.70	34.80	NA	NA
		34.29	31.15	32.13	34.36	34.10	34.91	34.71	NA	NA
	run 2	33.88	31.51	31.94	34.67	35.11	34.80	34.46	NA	NA
		34.08	30.84	31.94	34.74	35.04	35.19	34.18	NA	NA
		33.82	30.55	31.61	34.75	34.58	35.41	34.25	NA	NA
		34.06	32.35	32.16	34.29	35.63	35.38	34.29	NA	NA
	run 1	34.22	32.13	31.90	34.42	36.04	36.03	34.44	NA	NA
		34.29	32.43	32.42	34.56	35.49	34.71	34.52	NA	NA
Dav 2		34.71	32.35	31.76	34.41	35.71	35.65	34.61	NA	NA
		33.62	32.37	31.84	33.82	35.81	35.38	33.76	NA	NA
	run 2	33.85	32.53	32.14	33.88	35.48	35.48	33.68	NA	NA
		33.95	32.72	32.43	34.00	35.71	34.86	33.78	NA	NA
		34.16	32.61	31.95	33.85	36.05	35.27	33.80	NA	NA
		34.81	31.98	32.27	34.63	35.51	35.94	34.89	NA	NA
	run 1	34.62	31.92	31.68	34.86	35.46	35.66	35.08	NA	NA
		34.74	32.29	31.78	34.60	35.01	35.62	34.90	NA	NA
Day 3		34.58	32.00	31.57	34.90	35.48	35.09	34.80	NA	NA
,-		34.45	32.88	31.99	35.05	35.74	35.58	34.50	NA	NA
	run 2	34.28	32.70	31.81	34.37	36.24	35.46	34.58	NA	NA
		34.54	32.82	31.86	34.36	35.80	36.12	34.71	NA	NA
		34.47	32.32	31.64	34.20	35.85	35.17	34.70	NA	NA
Day 4	run 1	34.97	32.06	31.93	34.77	35.53	35.71	34.47	NA	NA
		34.82	32.47	31.83	34.69	35.35	35.72	34.81	NA	NA

Note: see table 26 for equipment, dates and personnel information.

		34.79	32.40	32.10	34.62	35.27	35.61	34.92	NA	NA
		34.97	32.63	32.65	34.71	35.42	36.00	34.95	NA	NA
		34.13	32.43	32.18	34.36	35.66	36.51	34.46	NA	NA
	run 2	37.18	32.09	32.06	34.44	35.96	35.77	33.98	NA	NA
		34.44	32.51	32.36	34.21	36.31	35.85	34.21	NA	NA
		34.08	32.32	32.06	34.44	36.00	35.13	34.21	NA	NA
		34.09	32.58	32.43	33.95	35.59	35.57	33.95	NA	NA
	run 1	33.54	32.66	32.31	33.84	35.89	36.57	33.77	NA	NA
		34.03	32.60	32.41	34.09	36.00	35.04	33.89	NA	NA
Day 5		33.93	32.42	32.07	33.73	35.44	34.87	34.03	NA	NA
		35.00	32.54	32.16	34.90	35.99	35.34	34.75	NA	NA
	run 2	34.71	32.47	32.19	34.99	35.31	36.05	34.71	NA	NA
		35.04	32.76	32.47	34.97	35.51	35.45	34.95	NA	NA
		34.68	32.52	32.25	34.78	35.64	36.05	34.92	NA	NA

erkinElmer苏州新波生物技术有限公司

4.1.7 Data analysis

Data analysis was conducted using Analyse-it for Microsoft Excel 5.50.

The generated CVs of repeatability and reproducibility shown in table 30.

Target	N	R	epeatabi	lity		Reproduci	bility
i di get		CV	95% CI		CV	95% CI	
N_Low	120	0.9%	0.8%	to 1.1%	1.6%	1.4%	to 3.3%
N_Moderate	120	0.8%	0.7%	to 0.9%	1.8%	1.6%	to 6.0%
ORF1ab_Low	120	1.2%	1.0%	to 1.4%	1.5%	1.4%	to 3.3%
ORF1ab_Moderate	120	0.8%	0.7%	to 1.0%	1.1%	1.0%	to 2.6%

Table 30: Summary of the assay repeatability and reproducibility.

From the results shown in table 30, the assay and instruments demonstrated very good repeatability and reproducibility with CV of Ct values less than 5% when testing at different labs among different days using different batches of reagents.

4.2 Precision Study on chemagic[™] 360

4.2.1 Instruments and Reagents

RNA extraction:

- chemagic[™] Viral DNA/RNA 300 Kit special H96 (CMG-1033-S)
- chemagic[™] 360

PCR:

- PerkinElmer[®] SARS-CoV-2 Real-time RT-PCR Assay (2019-nCoV-PCR-AUS)
- Applied Biosystems[™] 7500 Real-Time PCR System

Note: for equipment ID #s, reagent batch lot information, and personnel information, please see table 31.

4.2.2 Testing Sample

According to the recommendation in EP05-A3^[4], three samples, one negative and two positive samples representing low and moderated clinical specimens are tested for assay precision evaluation.

By the time the precision study on chemagic[™] 360 was conducted, Sym-Bio has obtained an inactivated cultured SARS-CoV-2 isolate from clinic (Isolate 2/231/human/2020/CHN), therefore this isolate instead of the encapsulated RNAs was used in this precision study to better minic clinical specimen. Taking into consideration the assay detection sensitivity and the SARS-CoV-2 viral loads in clinical upper respiratory track specimens (10² copies/ml to 10⁹ copies/ml as reported by a few literatures ^[5, 6]), a sample at 105 copies/ml which is at the low end of clinical specimens and approximately 3x of the assay LoD determined on chemagic[™] 360 was used as low positive sample for precision study, and a sample at 1050 copies/ml was used as moderate positive sample for the study.

- Negative sample was prepared by pooling negative oropharyngeal swabs in virus transport medium (VTM);
- Low positive sample was prepared by spiking SARS-CoV-2 virus (Isolate 2/231/human/2020/CHN) into negative oropharyngeal swab matrix at 105 copies/ml (3x LoD);
- Moderate positive sample was prepared by spiking SARS-CoV-2 virus (Isolate 2/231/human/2020/CHN) into negative oropharyngeal swab matrix at 1050 copies/ml (30x LoD).
- 4.2.3 Acceptance Criteria
 - a. Negative samples should all show negative results.
 - b. Positive samples should all show positive results and the Coefficient of Variance (CV) of positive samples' Ct values should be \leq 5%.

4.2.4 Testing Plan

The detailed testing plan including instruments and labs is listed in table 31.

Testing personnel: Chunhua Zhu									
Lot AY20200202 tested at R&D Testing Lab 1									
(Date, Run, Equip. Desc., Equipment ID#)									
Run1 chemagic [™] 360 SB-QC-M059									
07/Apr/2020		ABI7500	SB-RD538						
chemagic [™] 360 SB-QC-M059									
		ABI7500	SB-RD387						
	Run1	chemagic™ 360	SB-QC-M059						
08/Apr/2020	Nulli	ABI7500	SB-RD483						
00,7,10,72020	Run2	chemagic™ 360	SB-QC-M059						
ABI7500 SB-RD387									
09/Apr/2020 Run1 chemagic [™] 360 SB-QC-M059									

Table 31: Testing plan for precision study on chemagic[™] 360.

		ABI7500	SB-RD387		
	Run2	chemagic™ 360	SB-QC-M059		
		ABI7500	SB-RD387		
10/Apr/2020	Run1	chemagic™ 360	SB-QC-M059		
		ABI7500	SB-RD387		
	Run2	chemagic™ 360	SB-QC-M059		
		ABI7500	SB-RD403		
13/Apr/2020	Run1	chemagic™ 360	SB-QC-M059		
		ABI7500	SB-RD403		
	Run2	chemagic™ 360	SB-QC-M059		
	TUTE .	ABI7500	SB-RD403		

*By the time the report was submitted to Emergo on the 25th May 2020, precision study using chemagic[™] 360 was conducted on only one lot of reagent.

4.2.5 Testing Results

The test results (Ct values) from all samples are summarized in table 32.

Table 32: Ct values of samples tested using reagent lot AY20200202 on chemagic[™] 360.

Note: see table 31 for equipment	, dates and personnel information.
----------------------------------	------------------------------------

L	ot	AY20200202								
Concentration		Moderate positive			Low positive			Negative		
Days	Runs	Ct								
	Target	IC	N	ORF1ab	IC	N	ORF1ab	IC	N	ORF1ab
Day 1		31.59	33.01	32.77	32.85	36.46	37.48	33.06	NA	NA
	run 1	32.07	33.83	33.61	32.93	37.09	36.26	33.15	NA	NA
		32.00	33.70	33.37	33.09	37.29	37.04	33.31	NA	NA
		32.32	33.98	33.65	33.02	37.26	37.76	32.97	NA	NA
		31.63	34.60	34.12	32.33	38.23	37.60	32.55	NA	NA
	run 2	31.42	34.35	34.16	32.53	37.71	37.96	32.54	NA	NA
		31.45	34.48	34.07	32.36	37.26	37.67	32.80	NA	NA
		31.39	34.35	33.54	32.67	37.15	37.37	32.54	NA	NA
	run 1	32.49	34.15	33.93	33.38	40.15	38.29	33.30	NA	NA
		32.62	34.26	33.86	33.59	37.79	36.76	33.57	NA	NA
		32.84	34.88	33.99	33.55	37.77	36.97	33.26	NA	NA
Day 2		32.56	34.32	33.98	30.04	37.50	29.90	33.10	NA	NA
	run 2	31.58	34.42	33.97	32.79	38.84	38.11	32.76	NA	NA
		31.81	34.55	34.24	32.37	37.45	37.76	33.03	NA	NA
		31.71	34.88	34.15	32.69	38.17	36.52	32.86	NA	NA
		31.95	34.76	34.34	29.95	37.27	30.30	33.10	NA	NA
Day 3	run 1	31.66	34.87	33.83	32.40	37.48	37.37	32.23	NA	NA
		31.70	34.73	34.22	32.54	37.68	37.72	32.22	NA	NA
		31.88	34.62	34.11	32.38	38.44	36.87	32.10	NA	NA
		31.77	34.37	34.00	32.72	37.31	38.23	32.51	NA	NA
		31.70	34.57	34.29	32.38	38.98	37.13	32.07	NA	NA

		31.87	34.56	34.22	32.31	39.44	38.42	32.88	NA	NA
	-	31.68	34.50	34.15	32.21	38.83	38.17	32.34	NA	NA
	run 2	31.79	33.99	34.20	32.38	37.43	38.19	32.64	NA	NA
		31.52	34.28	33.97	32.75	38.30	38.55	32.86	NA	NA
	run 1	31.96	34.73	33.99	32.45	38.95	36.73	32.79	NA	NA
		31.84	34.72	34.20	32.52	37.76	37.20	32.59	NA	NA
Day 4		31.89	34.66	34.27	32.86	37.53	37.71	33.06	NA	NA
		32.74	33.96	34.69	33.27	37.08	38.30	33.45	NA	NA
	run 2	32.99	33.89	34.72	33.49	37.71	37.43	33.75	NA	NA
		33.29	34.62	34.69	33.77	38.12	37.13	34.00	NA	NA
		32.94	33.90	34.53	33.69	36.88	37.50	33.99	NA	NA
run 1 Day 5		31.74	34.20	34.78	32.61	37.53	37.95	32.78	NA	NA
	run 1	32.26	34.35	34.97	32.92	37.86	37.55	32.46	NA	NA
		31.89	34.70	34.95	32.85	38.43	37.90	32.64	NA	NA
		32.29	34.19	34.99	33.23	38.23	38.45	32.72	NA	NA
	run 2	31.51	33.77	34.40	32.21	37.32	37.42	32.66	NA	NA
		31.76	34.42	34.51	32.26	37.15	37.48	32.63	NA	NA
		31.51	34.04	34.74	32.89	38.29	37.44	32.89	NA	NA
		32.02	34.32	34.78	32.89	37.65	37.86	32.95	NA	NA

erkinElmer苏州新波生物技术有限公司

4.2.6 Data analysis

Data analysis was conducted using Analyse-it for Microsoft Excel 5.50.

The generated CVs of repeatability and reproducibility shown in table 33.

Target	Ν	R	epeatabi	lity	Reproducibility			
laiget		CV	95% CI		CV	95% CI		
N_Low	40	1.8%	1.4%	to 2.4%	2.0%	1.7%	to 3.4%	
N_Moderate	40	0.8%	0.7%	to 1.1%	1.2%	1.0%	to 2.2%	
ORF1ab_Low	38*	1.5%	1.2%	to 2.1%	1.5%	1.3%	to 2.2%	
OPE1ab Moderate	40	0.6%	0.5%	to 0.8%	1 /1%	1.0%	to 3.5%	

Table 33: Summary of the assay repeatability and reproducibility on chemagic[™] 360.

ORF1ab_Moderate400.6%0.5%to 0.8%1.4%1.0%to 3.5%*Two of the low positive sample tested on the 8th April 2020 showed significantly deviated ORF1ab amplification
as showed in Figure 2 (red symbol), they are clearly outliers comparing to the majority of low positive sample
through statistical analysis (Ct ~30 vs mean Ct 37.6 of the majority). It was found that these two samples were from
the same tube prepared in the beginning of the day and used in the two runs on that day. This gives a speculation
that the tube of sample may be contaminated with ORF1ab target probably from the other activities in the lab on
that day. Given the significant deviation of these two samples, and highly possibly the samples tested were not as
they designed to be, these two samples were excluded from the calculation of assay repeatability and
reproducibility.

Figure 2: Ct of ORF1ab low positive sample.

From the results shown in table 33, the assay and instruments demonstrated good repeatability and reproducibility with CV of Ct values less than 5%.

5. Validation of the assay procedure

The assay procedure described in the PerkinElmer[®] SARS-CoV-2 Real-time RT-PCR Assay kit insert was validated internally and externally.

The assay procedure involving Pre-NAT II extraction system was validated using contrived clinical oropharyngeal swabs and nasopharyngeal swabs. The study described in section 2.3.3 of this document involved the whole procedure, including sample collection (both oropharyngeal swab and nasopharyngeal swab), handling, nucleic acid extraction, PCR amplification and results analysis. The study also tested oropharyngeal swab and nasopharyngeal swab LoD samples, which validated that the assay procedure is well designed and meets the product requirement and intended use.

The assay procedure involving chemagic[™] 360 extraction system was also validated at a third-party's lab using clinical specimens. The study described in the Clinical Validation Report (ID: DHF-50-2009741) involved the whole procedure, including oropharyngeal swab, nasopharyngeal swab and saliva specimenscollection, handling, pooling, nucleic acid extraction, PCR amplification and results analysis. The study results well validated that the assay procedure meets the product requirement and intended use.

References

- EP17-A2 Evaluation of Detection Capability for Clinical Laboratory Measurement Procedure; Approved Guideline—Second Edition, June 2012.
- 2. EUA INTERACTIVE REVIEW TEMPLATE FOR MOLECULAR-BASED TESTS FOR SARS-CoV-2 THAT CAUSES CORONAVIRUS DISEASE 2019 (COVID-19), FDA, updated: March 12, 2020.
- 3. EP07 Interference Testing in Clinical chemistry; Approved Guideline—Third Edition, April 2018.
- EP05-A3 Evaluation of Precision of Quantitative Measurement Procedures; Approved Guideline— Third Edition, October 2014.
- Shufa Zheng, Jian Fan, *et al.*, Viral load dynamics and disease severity in patients infected with SARS-CoV-2 in Zhejiang province, China, January-March 2020: retrospective cohort study, *BMJ* 2020, 369:m1443.

6. Roman Wölfel, Victor M. Corman, et al., Virological assessment of hospitalized patients with COVID-2019, Nature 2020, Vol 581: 465-469.