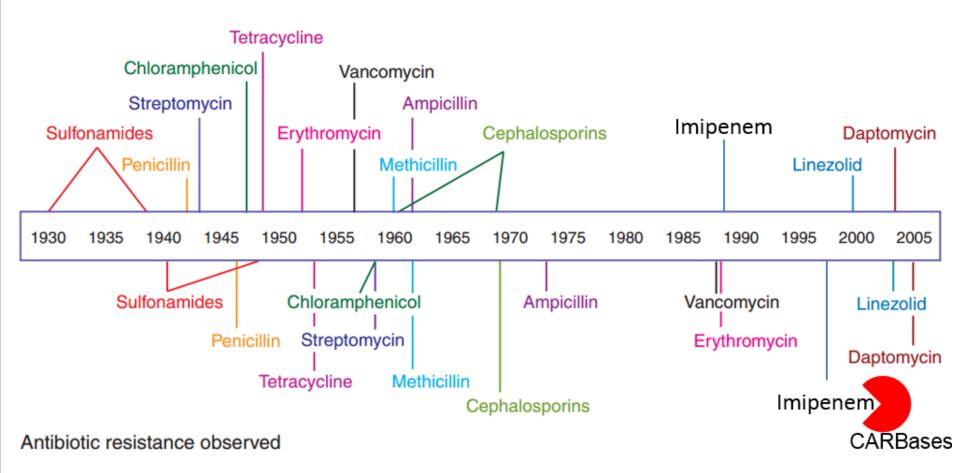

Diverse Mechanisms of Resistance in Carbapenem-Resistant Enterobacteriaceae at Stanford Health Care

Niaz Banaei MD
Director of Clinical Microbiology Laboratory
Associate Professor of Pathology and Medicine
Stanford University School of Medicine

Timeline of Microbial Arms Race


Antibiotic deployment

Antibiotic resistance observed

Timeline of Microbial Arms Race

Antibiotic deployment

Carbapenem-Resistant Enterobacteriaceae (CRE) Indian patient with pyelonephritis.
Visiting daughter in Silicon Valley.
Ureteral stent placed in India for kidney stones.
Urine culture: *E. coli* >100,000 cfu/mL

ORI Encurronnens distribution della

Susceptibility

	MICtby Vitek 2	
Amikacin	>=64 ug/mL	RESISTANT
Amoxicillin/Clavulanic Acid	>=32 ug/mL	RESISTANT
Ampicillin	>=32 ug/mL	RESISTANT
Cefazolin	>=64 ug/mL	RESISTANT 1
Cefepime	>=64 ug/mL	RESISTANT
Cefoxitin	>=64 ug/mL	RESISTANT
Ceftazidime	>=64 ug/mL	RESISTANT
Ceftolozane/Tazobactam		
Ceftriaxone	>=64 ug/mL	RESISTANT
Ciprofloxacin	>=4 ug/mL (RESISTANT
Doxycycline		
Ertapenem	>=8 ug/mL (RESISTANT
FOSFOMYCIN		
Gentamicin	>=16 ug/mL	RESISTANT
Imipenem		
Levofloxacin	>=8 ug/mL (RESISTANT
Meropenem	8 ug/mL (MIC)	RESISTANT
Nitrofurantoin	64 ug/mL (MIC)	INTERMEDIATE
Piperacillin/Tazobactam	>=128 ug/mL	RESISTANT
Polymixin B		
Tetracycline	>=16 ug/mL	RESISTANT
Tobramycin	>=16 ug/mL	RESISTANT
Trimethoprim/Sulfamethoxazole.	>=320 ug/mL	RESISTANT

Indian patient with pyelonephritis.

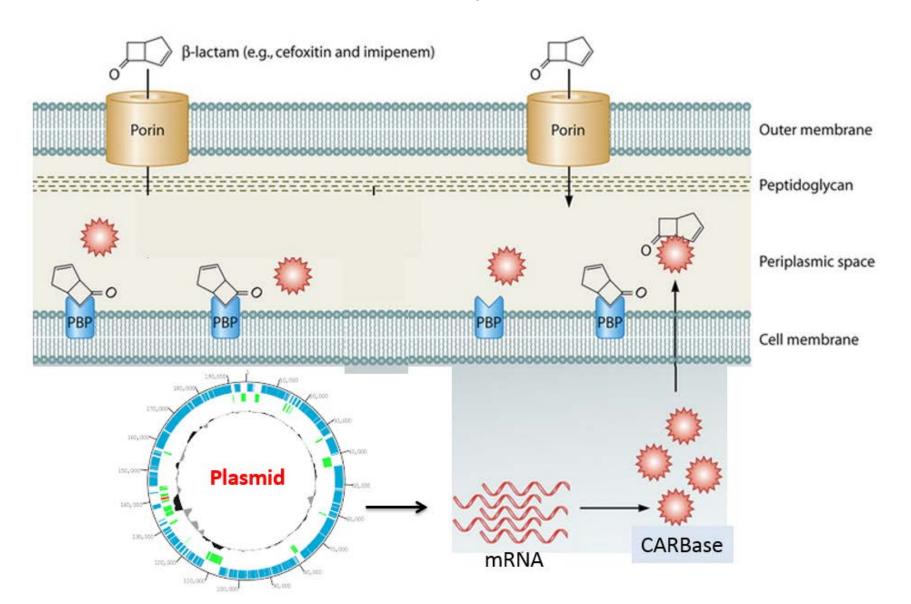
Visiting daughter in Silicon Valley.

Ureteral stent placed in India for kidney stones.

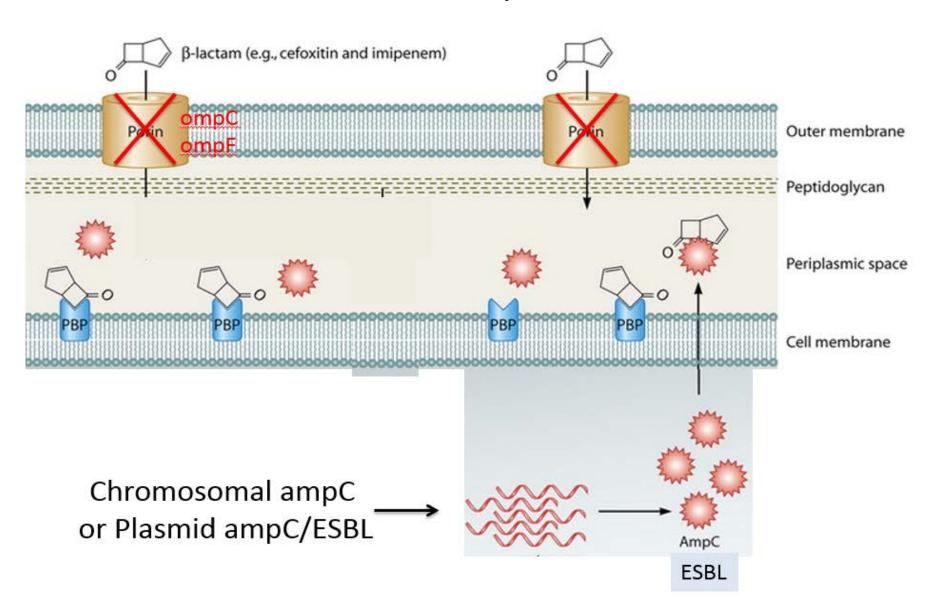
Urine culture: *E. coli* >100,000 cfu/mL

Susceptibility

	MIC by Vitek 2			MIC by Etest MIC MCG/ML BY E
	Not Specified		Disk Diffusion	MIC MCG/ML BY E
Amikacin	>=64 ug/mL	RESISTANT		
Amoxicillin/Clavulanic Acid	>=32 ug/mL	RESISTANT		
Ampicillin	>=32 ug/mL	RESISTANT		
Cefazolin	>=64 ug/mL	RESISTANT 1		
Cefepime	>=64 ug/mL	RESISTANT		
Cefoxitin	>=64 ug/mL	RESISTANT		
Ceftazidime	>=64 ug/mL	RESISTANT		
Ceftolozane/Tazobactam				>256 ug/mL R
Ceftriaxone	>=64 ug/mL	RESISTANT		
Ciprofloxacin	>=4 ug/mL (RESISTANT		
Doxycycline				>256 ug/mL R
Ertapenem	>=8 ug/mL (RESISTANT	RESISTANT	
FOSFOMYCIN			SUSCEPTIBLE	
Gentamicin	>=16 ug/mL	RESISTANT		
Imipenem			RESISTANT	
Levofloxacin	>=8 ug/mL (RESISTANT		
Meropenem	8 ug/mL (MIC)	RESISTANT	RESISTANT	
Nitrofurantoin	64 ug/mL (MIC)	INTERMEDIATE		
Piperacillin/Tazobactam	>=128 ug/mL	RESISTANT		
Polymixin B				1 ug/mL (MIC)
Tetracycline	>=16 ug/mL	RESISTANT		
Tobramycin	>=16 ug/mL	RESISTANT		
Trimethoprim/Sulfamethoxazole.	>=320 ug/mL	RESISTANT		


Outline

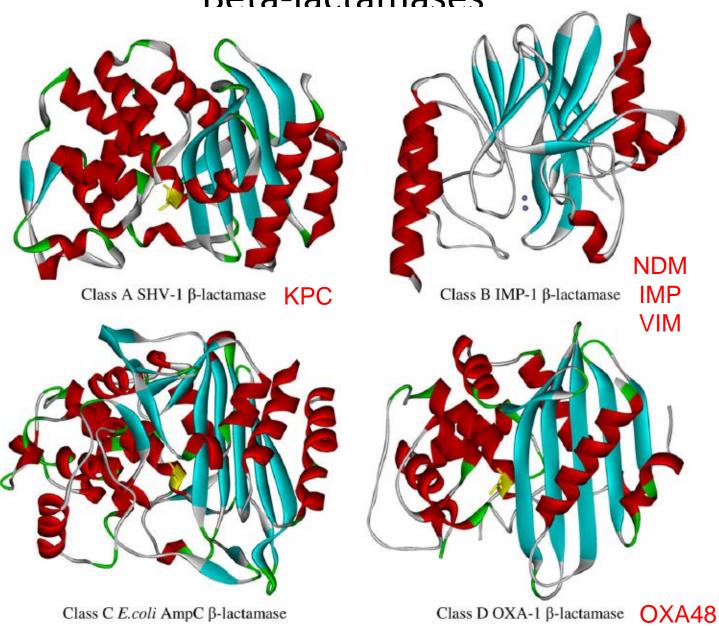
- Introduction to CRE
- Local Experience
 - Rate
 - Mechanism
 - In vitro susceptibility
 - Transmission
- Future challenges


Carbapenem-Resistant Enterobacteriaceae (CRE)

2015 CDC definition: Resistant to imipenem, meropenem, doripenem or ertapenem

Mechanism of Carbapenem Resistance

Mechanism of Carbapenem Resistance


Emergence of Carbapenemases

Enzyme	Class	Location	Year of Isolation	Country of origin
SME	Α	Chromosome	1982	London, UK
IMI-1	Α	Chromosome	1984	CA, USA
IMP	В	Plasmid	1991	Japan
VIM	В	Plasmid	1996	Verona, Italy
GES	Α	Plasmid	2000	French Guiana
OXA-48-like	D	Plasmid	2001	Turkey
KPC	Α	Plasmid	2001	NC, USA
GIM	В	Integron	2004	Germany
SIM	В	Integron	2005	Korea
CMY	С	Plasmid	2006	Seoul, Korea
IMI-2	В	Plasmid	2006	China
NDM	В	Plasmid	2008	London, UK

Emergence of Carbapenemases

Enzyme	Class	Location	Year of Isolation	Country of origin
IMP	В	Plasmid	1991	Japan
VIM	В	Plasmid	1996	Verona, Italy
OXA-48-like	D	Plasmid	2001	Turkey
KPC	Α	Plasmid	2001	NC, USA
NDM	В	Plasmid	2008	India

Beta-lactamases

Beta-lactamase Mechanisms

Class A, Class C Class D
$$\beta$$
-lactamase En zyme $O \longrightarrow HN$
 $H_2O \longrightarrow HN$

Class B β -lactamase

Beta-lactamase Molecular Class Predicts Susceptibility to New Inhibitors

Avibactam HN Class A, Class C H_2O Class D β-lactamase Enzyme **Aztreonam** HN-OH Class B \(\beta\)-lactamase Zn+2 Aztreonam

Outline

- Introduction to CRE
- Local Experience
 - Rate
 - Mechanism
 - In vitro susceptibility
 - Transmission
- Future challenges

CRE rates at Stanford Health Care

Canada		No. of CRE/CRE + non-CRE isolates (%)						
Species	2013	2014	2015	2016	2013-16			
All species	11/5001 (0.2)	14/3550 (0.4)	18/4752 (0.4)	19/5968 (0.3)	62/19271 (0.3)			

CRE definition based on pre-2015 CDC definition

CRE rates at Stanford Health Care

Canadan	No. of CRE/CRE + non-CRE isolates (%)					
Species	2013	2014	2015	2016	2013-16	
All species	11/5001 (0.2)	14/3550 (0.4)	18/4752 (0.4)	19/5968 (0.3)	62/19271 (0.3)	

CRE definition based on pre-2015 CDC definition

Stanford CRE rate 4-13 fold lower than national rates

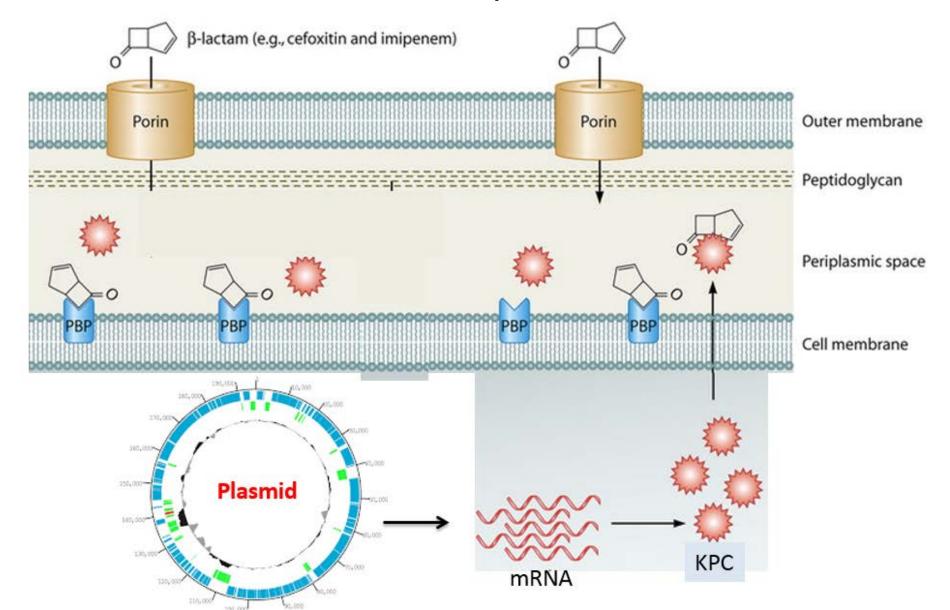
- 4.2% per 2011 NHSN data
- 1.4% per 2010 Surveillance Network-USA data CDC MMWR 2013 PMID: 23466435

Stanford Rate lower than national rates

- 0.73% per 2011-13 UCLA study Pollett et al JCM 2014

Original Investigation

Epidemiology of Carbapenem-Resistant Enterobacteriaceae in 7 US Communities, 2012-2013

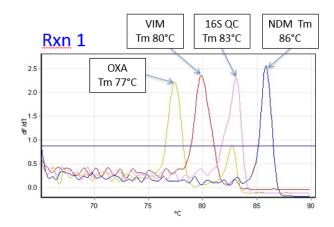

Alice Y. Guh, MD, MPH; Sandra N. Bulens, MPH; Yi Mu, PhD; Jesse T. Jacob, MD; Jessica Reno, MPH; Janine Scott, MPH; Lucy E. Wilson, MD, ScM; Elisabeth Vaeth, MPH; Ruth Lynfield, MD; Kristin M. Shaw, MPH; Paula M. Snippes Vagnone, MT(ASCP); Wendy M. Bamberg, MD; Sarah J. Janelle, MPH; Ghinwa Dumyati, MD; Cathleen Concannon, MPH; Zintars Beldavs, MS; Margaret Cunningham, MPH; P. Maureen Cassidy, MPH; Erin C. Phipps, DVM, MPH; Nicole Kenslow, MPH; Tatiana Travis, BS; David Lonsway, MMS; J. Kamile Rasheed, PhD; Brandi M. Limbago, PhD; Alexander J. Kallen, MD, MPH

	Incident CRE Casesa								
Emerging Infections	No. of Ca	ises		ual Incidence 000 Populatio <u>n</u>	Standardized Incidence Ratio				
Program Site	2012 ^b	2013	2012 ^b	2013	(95% CI) ^c				
Colorado		27		1.05	0.53 (0.39-0.71)				
Georgia	175	181	4.58	4.68	1.65 (1.20-2.25)				
Maryland		92		4.80	1.44 (1.06-1.96)				
Minnesota	31	40	1.82	2.32	0.94 (0.69-1.27)				
New Mexico		6		0.89	0.41 (0.30-0.55)				
New York		27		3.60	1.42 (1.05-1.92)				
Oregon	6	14	0.35	0.82	0.28 (0.21-0.38)				
Total	212	387	2.94	2.93					

Outline

- Introduction to CRE
- Local Experience
 - Rate
 - Mechanism
 - In vitro susceptibility
 - Transmission
- Future challenges

Mechanism of Carbapenem Resistance



Known Carbapenemases

Enzyme	Class	Location	Year of Isolation	Country of origin
SME	Α	Chromosome	1982	London, UK
IMI-1	Α	Chromosome	1984	CA, USA
IMP	В	Plasmid	1991	Japan
VIM	В	Plasmid	1996	Verona, Italy
GES	Α	Plasmid	2000	French Guiana
OXA-48-like	D	Plasmid	2001	Turkey
KPC	Α	Plasmid	2001	NC, USA
GIM	В	Integron	2004	Germany
SIM	В	Integron	2005	Korea
CMY	С	Plasmid	2006	Seoul, Korea
IMI-2	В	Plasmid	2006	China
NDM	В	Plasmid	2008	London, UK

Genotypic Detection of Known Carbapenemases

Stanford LDTs

bla_{KPC}
bla_{NDM}
bla_{IMP}
bla_{VIM}
bla_{OXA-48 like}
bla_{SPM}
bla_{GES}
bla_{GIM}
bla_{SME}
bla_{SIM}
bla_{IMI}
bla_{NMC-A}

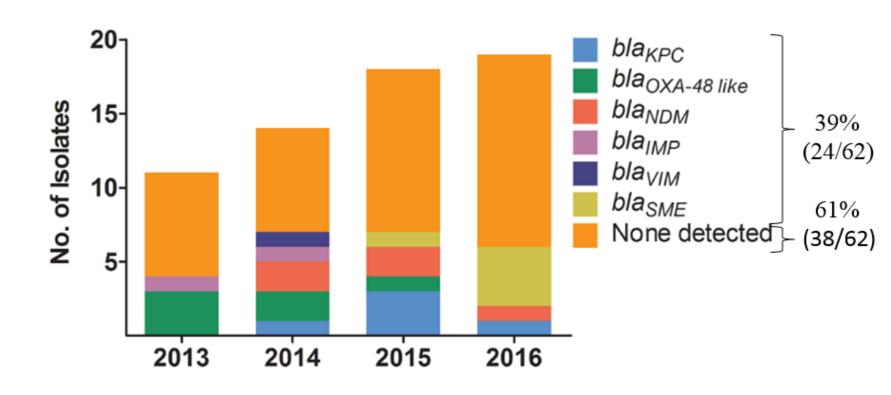
Carbases:

bla_{KPC}
bla_{NDM}
bla_{IMP}
bla_{VIM}
bla_{OXA-48 like}
bla_{SPM}
bla_{GES}
bla_{GIM}
bla_{OXA-23 like}
bla_{OXA-58 like}

ESBLs:

 $bla_{\rm GES}$

bla_{CTX-M-1} group
bla_{CTX-M-1-like}
bla_{CTX-M-15-like}
bla_{CTX-M-32-like}
bla_{CTX-M-2} group
bla_{CTX-M-9} group
bla_{CTX-M-9} group
bla_{CTX-M-8}, &-25 group
bla_{TEM-types}
bla_{SHV-types}
bla_{VEB}, bla_{PER}
bla_{BEL}


pAmpCs:

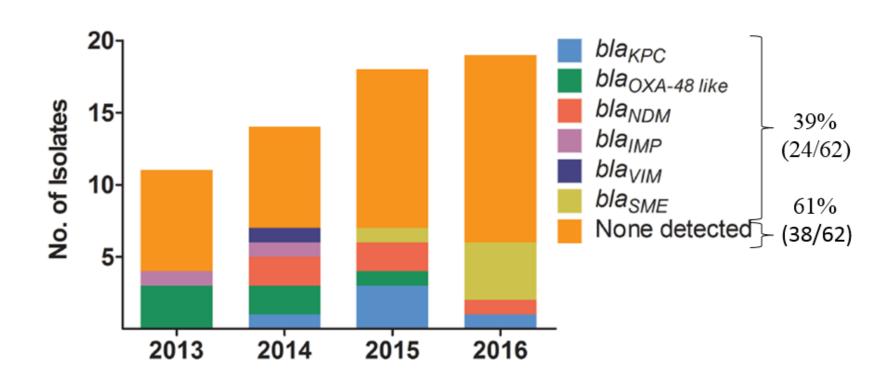
 $bla_{
m CMY\ I/MOX}$ $bla_{
m ACC}$ $bla_{
m DHA}$ $bla_{
m ACT/MIR}$ $bla_{
m CMY\ II}$ $bla_{
m FOX}$

Carbases:

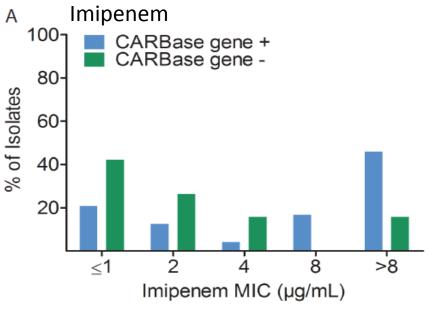
 bla_{KPC} bla_{NDM} bla_{IMP} $bla_{\mathrm{OXA-48\ like}}$

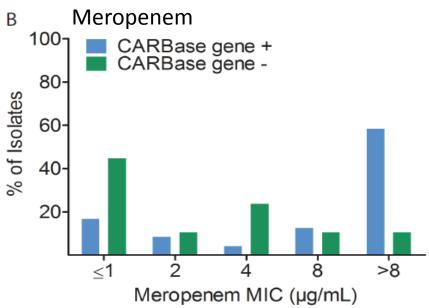
CRE Mechanisms at Stanford Health Care

Original Investigation

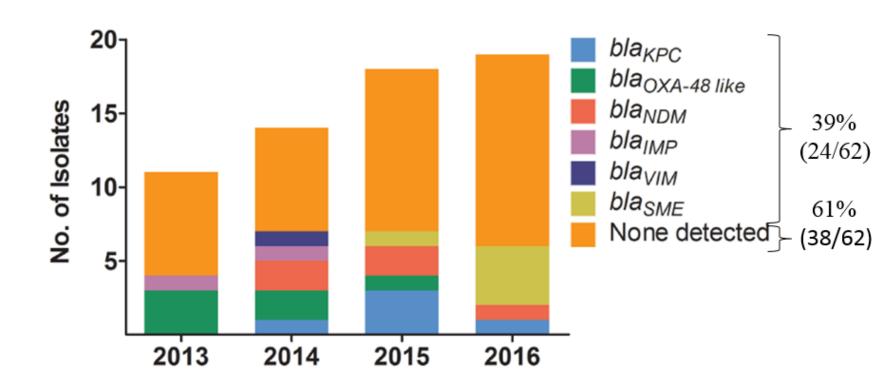

Epidemiology of Carbapenem-Resistant Enterobacteriaceae in 7 US Communities, 2012-2013

Alice Y. Guh, MD, MPH; Sandra N. Bulens, MPH; Yi Mu, PhD; Jesse T. Jacob, MD; Jessica Reno, MPH; Janine Scott, MPH; Lucy E. Wilson, MD, ScM; Elisabeth Vaeth, MPH; Ruth Lynfield, MD; Kristin M. Shaw, MPH; Paula M. Snippes Vagnone, MT(ASCP); Wendy M. Bamberg, MD; Sarah J. Janelle, MPH; Ghinwa Dumyati, MD; Cathleen Concannon, MPH; Zintars Beldavs, MS; Margaret Cunningham, MPH; P. Maureen Cassidy, MPH; Erin C. Phipps, DVM, MPH; Nicole Kenslow, MPH; Tatiana Travis, BS; David Lonsway, MMS; J. Kamile Rasheed, PhD; Brandi M. Limbago, PhD; Alexander J. Kallen, MD, MPH

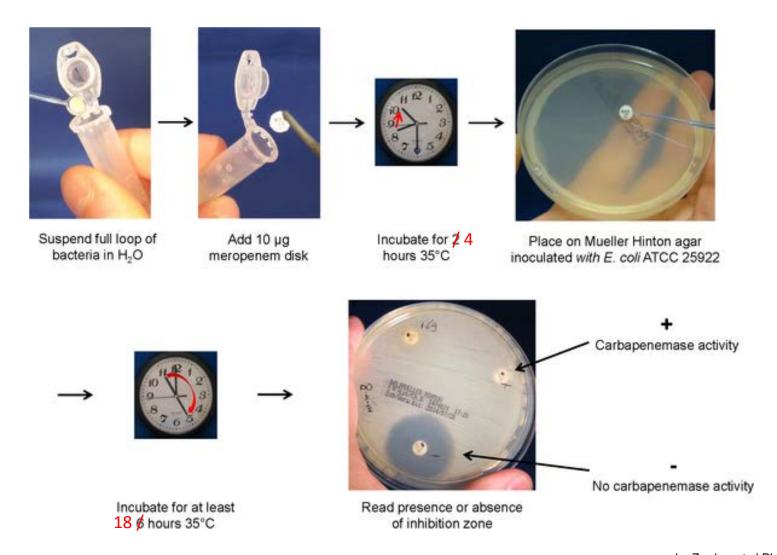

	CRE Organism or Isolate, No. (%)									
Emerging Infections Program Site	Total No.	Enterobacter aerogenes	Enterobacter cloacae Complex	Escherichia coli	Klebsiella pneumoniae	Klebsiella oxytoca	Isolates Submitted for Carbapenemase Testing	No. of Carbapenemase-Producing Isolates/Total No. of Isolates Submitted forTesting (%) ^a		
Coloradob	27	7 (25.9)	10 (37.0)	3 (11.1)	7 (25.9)	0	16 (59.3)	5/16 (31.3)		
Georgia	356	22 (6.2)	38 (10.7)	56 (15.7)	235 (66.0)	5 (1.4)	75 (21.1)	48/75 (64.0)		
Maryland ^b	92	8 (8.7)	6 (6.5)	9 (9.8)	69 (75.0)	0	17 (18.5)	13/17 (76.5)		
Minnesota	71	29 (40.8)	16 (22.5)	10 (14.1)	16 (22.5)	0	58 (81.7)	17/58 (29.3)		
New Mexico ^b	6	2 (33.3)	0	3 (50.0)	1 (16.7)	0	c	С		
New York ^b	27	3 (11.1)	2 (7.4)	5 (18.5)	17 (63.0)	0	9 (33.3)	5/9 (55.6)		
Oregon	20	4 (20.0)	7 (35.0)	3 (15.0)	6 (30.0)	0	13 (65.0)	2/13 (15.4)		
Total	599	75 (12.5)	79 (13.2)	89 (14.9)	351 (58.6)	5 (0.8)	188 (31.4)	90/188 (47.9)		


100% (90/90) were KPC

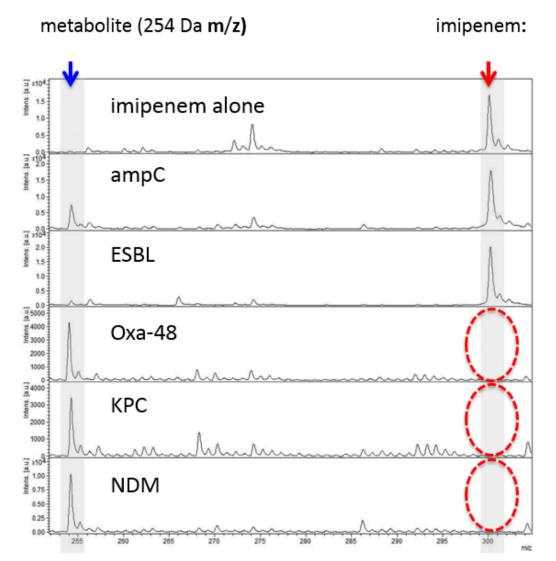
CRE Mechanisms at Stanford Health Care



Higher Carbapenem MIC in Carbapenemase+ CRE



CRE Mechanisms in Carbapenemase Gene-Negative Isolates at Stanford Health Care

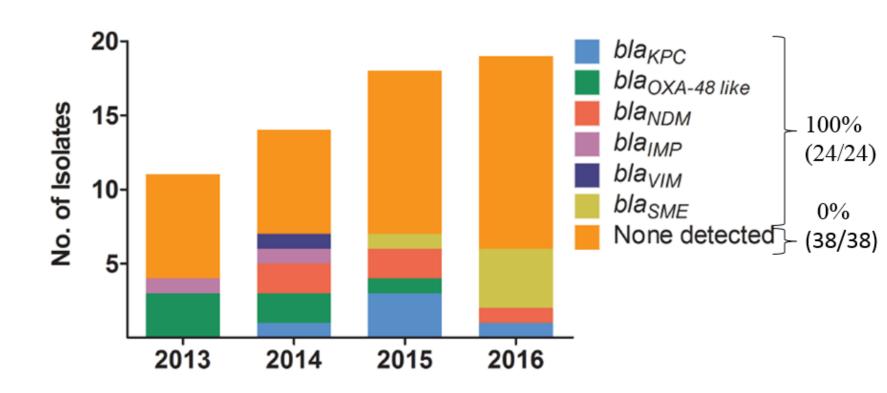


"SPACE" organisms made up 63.2% of CRE isolates lacking a carbapenemase gene compared with 33.3% (p=0.04) of isolates harboring a carbapenemase gene.

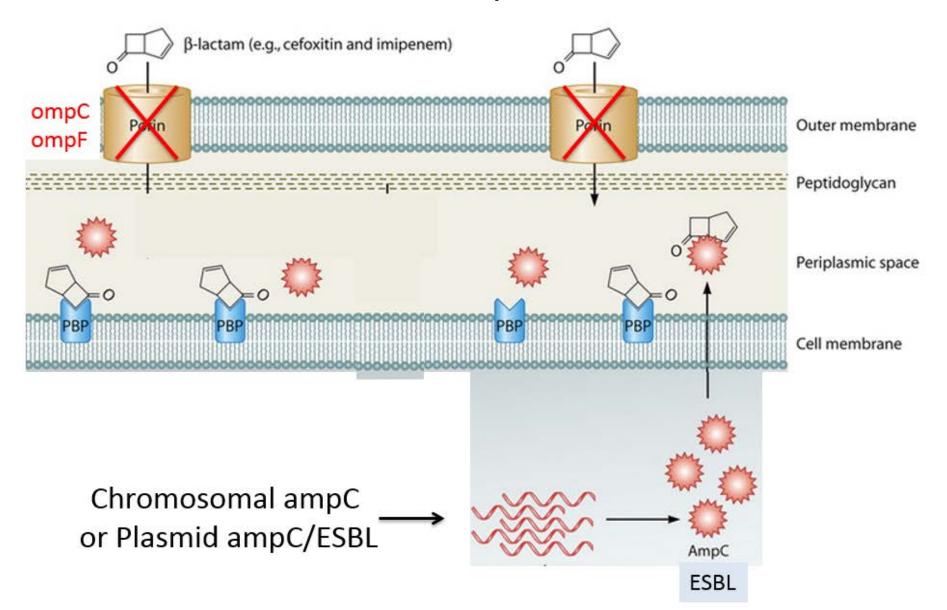
Phenotypic Detection of Carbapenemases: Carbapenem Inactivation Method (CIM)

Phenotypic Detection of Carbapenemases: MALDI-TOF Mas Spectrometry

300 Da m/z

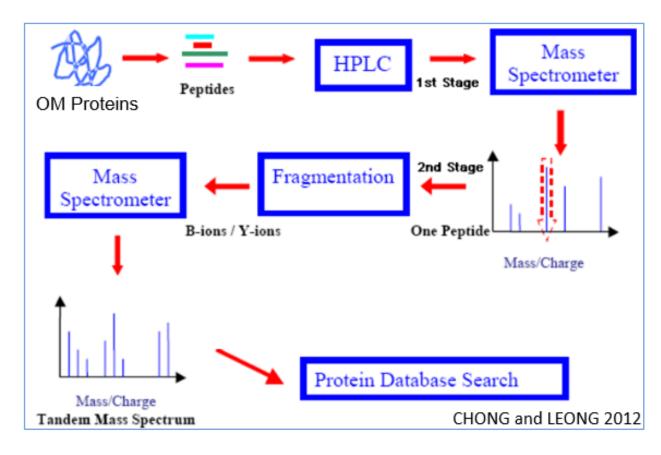

MALDI-TOF spectra of imipenem hydrolysis assays after a 20-min incubation at 37°C

 $\frac{\text{metabolite}}{\text{(metabolite + imipenem)}}$ ≥ 0.82

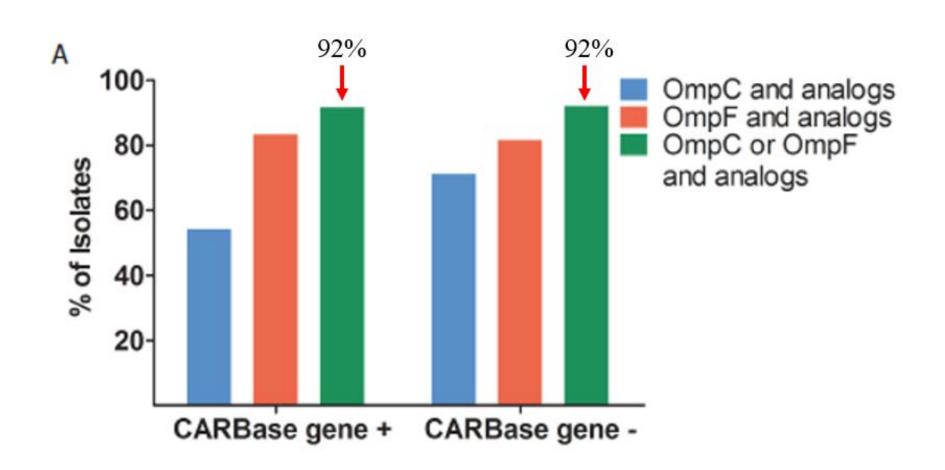

Training set: 77 CPE & 146 non-CPE

Sensitivity: 97.8% (25/25) Specificity: 97.8% (18/18)

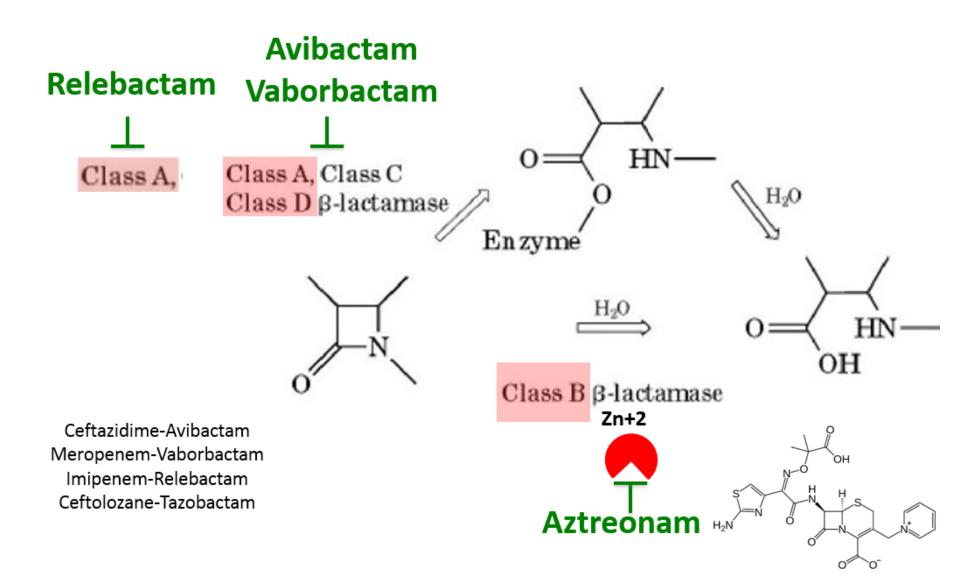
Carbapenemase Activity in CRE Isolates at Stanford Health Care

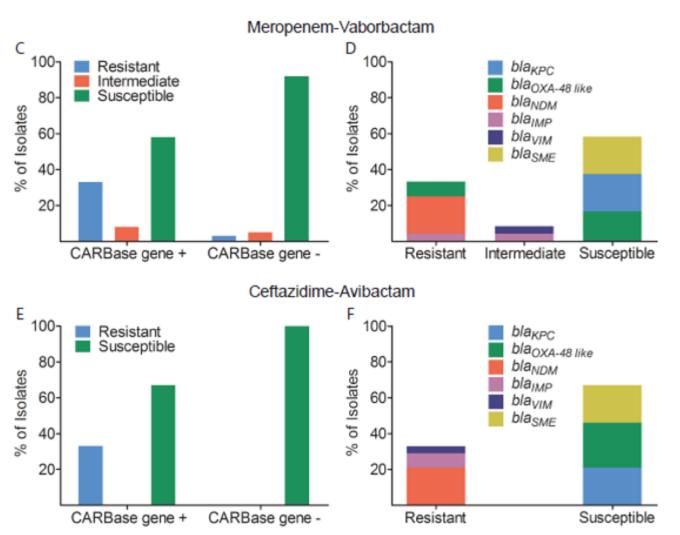


Mechanism of Carbapenem Resistance

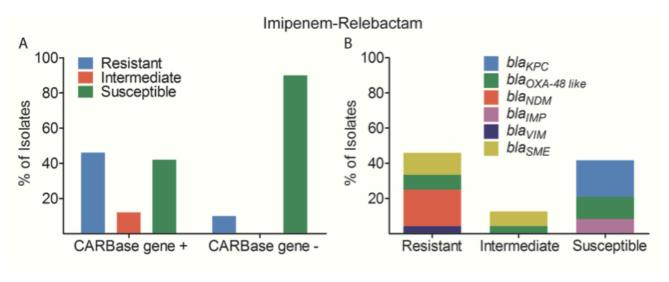


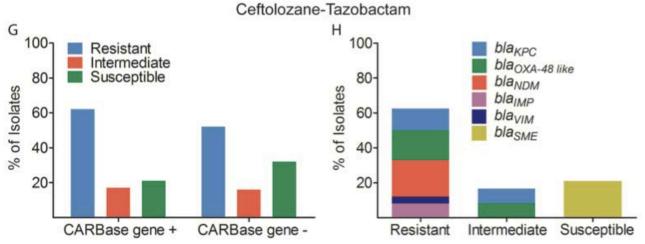
Phenotypic Detection of OmpC and OmpF and their Analogs


Porin Levels Down ≥2 Fold in Carbapenemase- Isolates

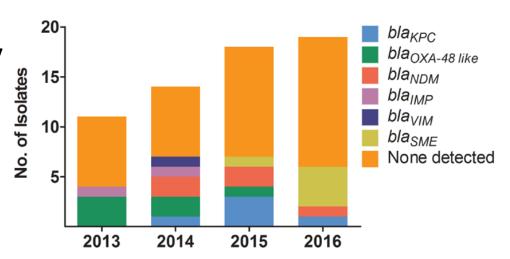

Outline

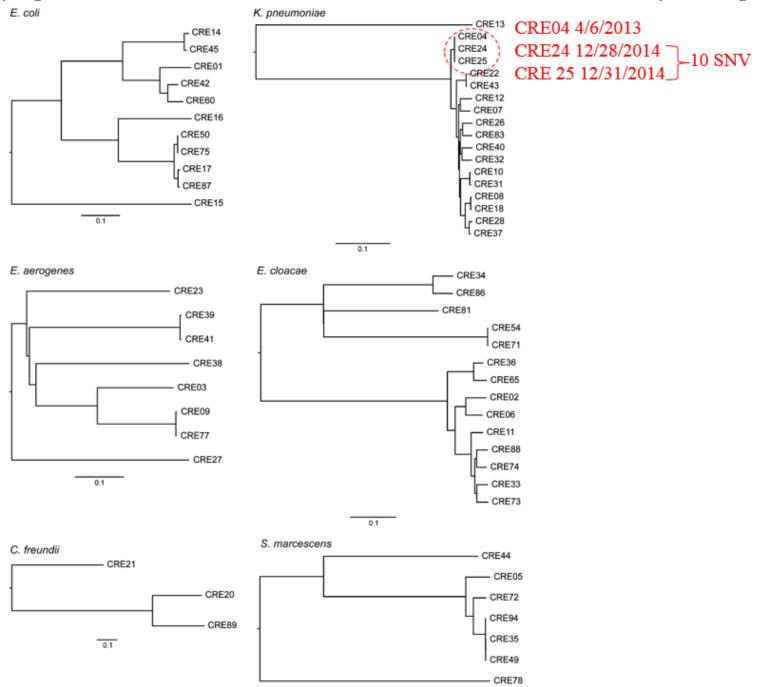
- Introduction to CRE
- Local Experience
 - Rate
 - Mechanism
 - In vitro susceptibility
 - Transmission
- Future challenges


Beta-lactamase Molecular Class Predicts Susceptibility to New Inhibitors



CRE Susceptibility to Newer β-lactamase Inhibitor Combinations as Predicted


CRE Susceptibility to Newer β-lactamase Inhibitor Combinations as Predicted



Outline

- Introduction to CRE
- Local Experience
 - Rate
 - Mechanism
 - In vitro susceptibility
 - Transmission
- Future challenges

Phylogenetic Tree for CRE Isolates Based on Whole Genome Sequencing

Summary

- Low CRE rate (0.3%) in our setting
- Comprehensive phenotypic and genotypic characterization identified sporadic occurrence of plasmid-encoded CP-CRE
- Not dominated by blaKPC
- Predictable susceptibility to newer β-lactam-βlactamase inhibitor combinations based on the mechanism of resistance
- On-demand nucleic acid testing was sufficient for detection of CP-CRE

61 y/o liver and kidney transplant Respiratory and urine cultures

	4/1/2018 1045	4/18/2018 1330	4/22/2018 1037	4/22/2018 1055	4/28/2018 1314	5/11/2018 2311	5/13/2018 2238	5/13/2018 2250	5/14/2018 0851	5/14/2018 1214	5/19/2018 1825	6/5/2018 1422	6/5/2018 1630	6/8/2018 1800	6/13/2018 1805
CULTURE AND DIRECT															
BLOOD CULTURE (AER			**				**								
BLOOD CULTURE (2 A				*(*)				*(5)							
LEGIONELLACULTURE	\$\frac{1}{2}														
RESPIRATORY CULTUR	\$\frac{1}{2}	*(∫ c !				\$ €			***				* <u>**</u>		
URINE CULTURE										***		***		*≌ c !	***

Enterobacter cloacae complex 4/18/18

	Enterobacter	cloacae complex			
	MIC MCG/MI	_	MIC		NUCLEIC ACID TEST
Amoxicillin/Clavulanic Acid			>16 ug/mL	RESISTANT	
Ampicillin			>16 ug/mL	RESISTANT	
Ampicillin/Sulbactam			>16 ug/mL	RESISTANT	
Aztreonam.			>16 ug/mL	RESISTANT	
Cefazolin			>16 ug/mL	RESISTANT	
Cefepime			>16 ug/mL	RESISTANT	
Cefoxitin			>16 ug/mL	RESISTANT	
Ceftazidime			16 ug/mL	RESISTANT	
Ceftazidime/avibactam	1.0 ug/mL	SUSCEPTIBLE			
Ceftriaxone			>32 ug/mL	RESISTANT	
Cefuroxime (IV)			>16 ug/mL	RESISTANT	
Ciprofloxacin			>2 ug/mL	RESISTANT	
Ertapenem			>4 ug/mL	RESISTANT	
Gentamicin			<=1 ug/mL	SUSCEPTIBLE	
Imipenem			8 ug/mL	RESISTANT	
IMP PCR					NEGAT
KPC PCR					POSIT
Levofloxacin			4 ug/mL	INTERMEDIATE	
Meropenem			>8 ug/mL	RESISTANT	
Moxifloxacin			>4 ug/mL	RESISTANT	
NDM PCR					NEGAT
OXA48-LIKE PCR					NEGAT
Piperacillin/Tazobactam			>64 ug/mL	RESISTANT	
Tetracycline			>8 ug/mL	RESISTANT	
Tigecycline			4 ug/mL	INTERMEDIATE	
Trimethoprim/Sulfamethoxazole	e.		<=0.5 ug/mL	SUSCEPTIBLE	
VIM PCR					NEGAT

Enterobacter cloacae complex 6/13/18

Susceptibility				
	Enterobacter cloacae complex			
	MIC MCG	/ML	MIC	
			>=32	
Amoxicillin/Clavulanic Acid			ug/mL	RESISTANT
			>=64	
Cefazolin			ug/mL	RESISTANT 1
			>=64	
Cefoxitin			ug/mL	RESISTANT
			>=64	
Ceftazidime			ug/mL	RESISTANT
	32			
Ceftazidime/avibactam	ug/mL	RESISTANT		
			>=64	
Ceftriaxone			ug/mL	RESISTANT
Ciprofloxacin			2 ug/mL	INTERMEDIATE
Damandiaa	0/1	INTERMEDIAT	-	
Doxycycline	8 ug/mL	INTERMEDIAT	>=8	
Estamanan			_	DECICTANT
Ertapenem			ug/mL	RESISTANT
Gentamicin			<=1	SUSCEPTIBLE
Gentamicin			ug/mL	SUSCEPTIBLE
Levofloxacin			4 ug/mL	INTERMEDIATE
			>=16	
Meropenem			ug/mL	RESISTANT
•			256	
Nitrofurantoin			ug/mL	RESISTANT
			>=128	
Piperacillin/Tazobactam			ug/mL	RESISTANT
•			>=16	
Tetracycline			ug/mL	RESISTANT
			160	
Trimethoprim/Sulfamethoxazol	e.		ug/mL	RESISTANT
- py			-3,	

Acknowledgements

Stanford University

Banaei lab

Rajiv Gaur

Fiona Senchyna

Carlos Gomez

Cynthia Truong

Johanna Sandlund

Clinical Microbiology

Nancy Watz

Indre Budvytiene

Bhatt lab

Fiona Tamburini

Tessa Andermann

Bruker/UC Davis

Guillaume Tremintin Gongyi Shi Dietmar Kültz

Cepheid

Fred Tenover Isabella Tickler

Financial Support

Merck