California Antimicrobial Resistance Laboratory Network:

Carbapenemase Testing at the CDPH Microbial Diseases Laboratory: New Tests and Submission Options

Webinar November 8th, 2017

Microbial Diseases Laboratory
Healthcare-Associated Infections Program
California Department of Public Health

Presenters

- Sam Horwich-Scholefield, MPH CIC
 Antimicrobial Use and Resistance Coordinator
 Healthcare-Associated Infections Program
- Stephanie Abromaitis, Ph.D.
 Foodborne & Waterborne Diseases Section
 Microbial Diseases Laboratory
- Peng Zhang, Ph.D.
 Bacterial Diseases Section
 Microbial Diseases Laboratory
- Hillary Berman Watson, Ph.D. MPH
 Core Laboratory
 Microbial Diseases Laboratory
- Robin Hogue, CLS PHM
 Bacterial Diseases Section
 Microbial Diseases Laboratory
- Erin Epson, MD
 Assistant Chief/ Public Health Medical Officer
 Healthcare-Associated Infections Program

Objectives

- Review the role of laboratory testing in preventing the spread of carbapenemase-producing organisms
- Describe phenotypic and molecular tests for carbapenemase detection available at MDL
- Present different carbapenemase submission and testing scenarios
- Provide detailed instructions on specimen submission

Enterobacteriaceae

Gram negative bacteria - normal human gut flora

Citrobacter spp.
 Morganella spp.

E. coliProteus spp.

Enterobacter spp.
 Salmonella spp.

Klebsiella sppSerratia spp.

Causative agents of various types of infections

UTI, wound infections, pneumonia, bacteremia

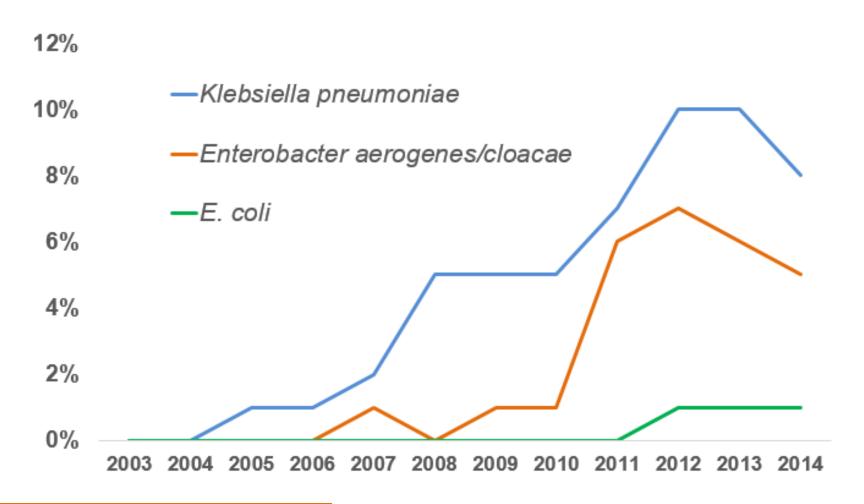
Transmission, outbreaks in healthcare settings

Carbapenem-Resistant Enterobacteriaceae

- Carbapenem antibiotics generally reserved for Enterobacteriaceae that are resistant to other antibiotics
- Infections caused by carbapenem-resistant
 Enterobacteriaceae (CRE) are more difficult to treat and associated with high mortality
- Risk factors for CRE include healthcare exposures, medical devices and antibiotic use

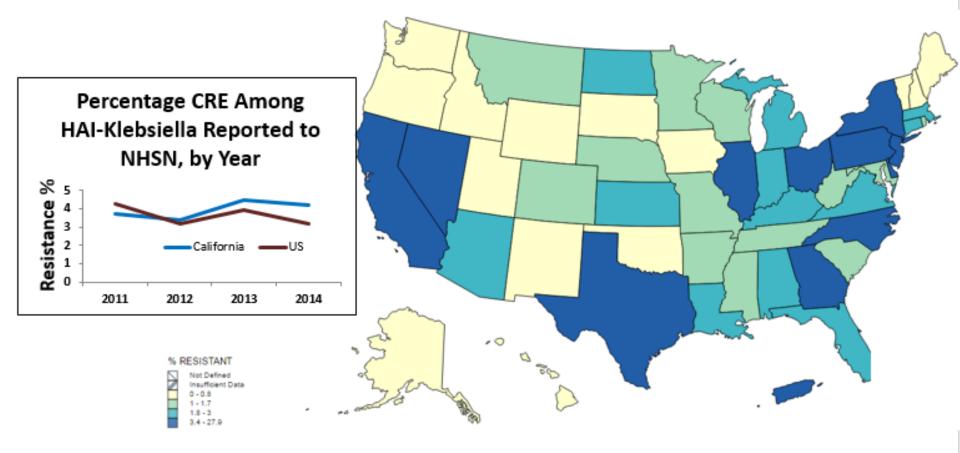
Carbapenem-Resistant Enterobacteriaceae (CRE)

CDC 2015 Surveillance Definition of CRE


- Any Enterobacteriaceae that is <u>either</u>:
 - Resistant to at least one carbapenem antibiotic

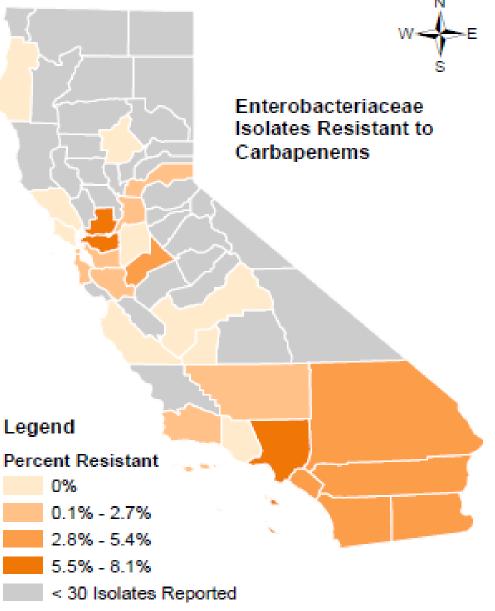
- OR -

 Demonstrated to produce carbapenemase (e.g., KPC, NDM, OXA, VIM, IMP)



Carbapenem Resistance in the US

CRE Among Healthcare-Associated Infections



Source: Antibiotic Resistance Patient Safety Atlas

Data from National Healthcare Safety Network (NHSN), 2011-2014

Percentage CRE Among HAI Reported to NHSN, 2014-2015, California Acute Care Hospitals (N=342)

Different Types of CRE

- Carbapenemase-producing CRE (CP-CRE)
 - produce enzymes that make carbapenems ineffective (e.g., KPC, NDM, OXA, VIM, IMP)
- Non-carbapenemase producing CRE (non CP-CRE)
 - resistant by other mechanisms (e.g., ESBL or AmpC combined with porin loss mutation)

CRE Iceberg Patients test 'CRE'-positive by antimicrobial susceptibility testing 6 Permutations of Nosocomial CRE CRE Non-Non-Non-Resistance CP CP CP CP CP Mechanism Dual: Antibiotic Transmissionantibiotic selective pressuremediated CRE induced pressure and exogenous Acquisition endogenous exogenous acquisition Route acquisition or exposure enrichment

Patients enter hospital CRE-negative

CP-CRE are a Public Health Threat

- Carbapenemases can be transmitted between bacteria;
 increased incidence of CRE in the US is due to CP-CRE
- Higher mortality with invasive CP-CRE infections
 - Adjusted odds of dying more than 4 times greater for CP-CRE compared with non-CP-CRE
- CDC identifies CRE as urgent public health threat

Source: Guh et al Epidemiology of CRE, 2012-2013 JAMA 2015 Source: Tamma et Mortality with CP-CRE bacteremia CID 2017

Carbapenemase Testing

- CP-CRE warrant measures to assess and prevent further transmission in healthcare settings
- Carbapenemase testing to distinguish CP-CRE from non-CP CRE informs
 - Better understanding of your hospital's CRE epidemiology
 - Immediate infection control interventions
 - Epidemiologic investigation
 - Public health response actions

Scenario: Hospitalized Patient Identified with CRE

Different Types of Carbapenemase Testing

- Phenotypic testing: identifies whether or not an isolate is a carbapenemase producer
 - Modified carbapenem inactivation method (mCIM)
- Molecular testing: identifies the specific type of carbapenemase present
 - Real-time PCR testing using Cepheid Xpert® Carba-R, Whole Genome Sequencing
- Discrepant results, e.g., positive phenotypic test and negative genotypic test, might represent a novel carbapenemase

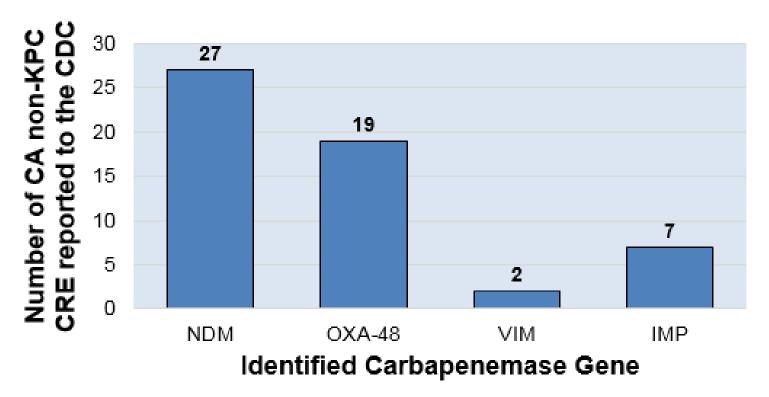
Carbapenemase Gene Detection by Cepheid Xpert® Carba-R Assay

Stephanie Abromaitis, Ph.D.

Section Chief - Foodborne & Waterborne Diseases Section Microbial Diseases Laboratory Program

Overview:

- What the Xpert® Carba-R detects
- How the Xpert® Carba-R works
- MDL verification summary



What the Xpert® Carba-R Detects

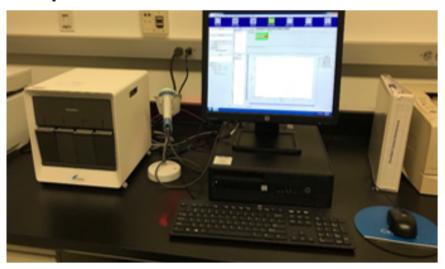
- The Xpert® Carba-R detects and differentiates gene sequences for the carbapenemase resistance genes
 - blaKPC (KPC)
 - blaNDM (NDM)
 - blaVIM (VIM)
 - blaIMP (IMP)
 - blaOXA-48 like (**OXA-48**)

California non-KPC CRE Reported to the Centers for Disease Control and Prevention (CDC)

Numbers reflect totals as of June 2017

What the Xpert® Carba-R Detects

- There are multiple variants of each carbapenemase gene
- Not all variants of each of the "Big Five" carbapenemases are detected by the Xpert® Carba-R

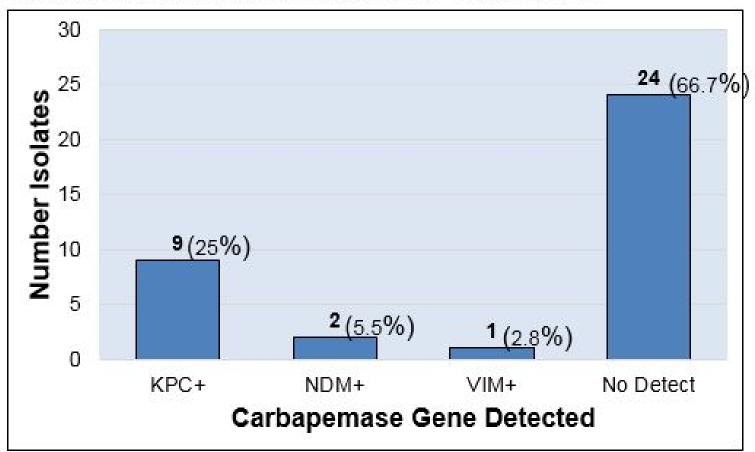

Carbapenemase	Variants Detected by Xpert® Carba-R	Variants Not Detected by Xpert® Carba-R	Untested Variants (partial list)
IMP	IMP-1, 2, 6, 10, 11	IMP-7, 13, 14	IMP-3, 8, 9, 19, 20, 21, 22, 24, 25, 27, 30, 31, 33, 37, 40, 42

Adapted from Cepheid Xpert® Carba-R 510(k) Substantially Equivalent documents

How the Xpert® Carba-R Works

- Automated system for
 - DNA extraction
 - Template amplification
 - Target sequence detection via real-time PCR

MDL Verification Summary


- Tested isolates grown on blood agar
 - 32 carbapenemase-positive
 - 10 carbapenemase-negative
- Included:
 - 13 species
 - 19 carbapenemase gene variants
 - Isolates encoding non-carbapenemase betalactamases

Verification	on Results
Accuracy = 97.6%	Sensitivity = 96.9%
Reproducibility = 100%	Specificity = 100%

MDL Xpert® Carba-R Testing Thus Far

36 isolates received 08/30/2017 to 10/31/2017

Carbapenemase Production Detection by Modified Carbapenem Inactivation Method (mCIM)

Peng Zhang, Ph.D.

Section Chief – Bacterial Diseases Section Microbial Diseases Laboratory Program

	Phenotypic Test Used	for Epidemiological or Infection	Control-Related Testing
	Modified Hodge Test (MHT)	Carba NP	Modified Carbapenem Inactivation Method (mCIM)
Organisms	* Only applies to Enterobacteriaceae	* Enterobacteriaceae * P. aeruginosa * Acinetobacter spp.	* Currently applies to Enterobacteriaceae
	* Simple to perform * No special reagents or media necessary	* Rapid	* Simple to perform * No special reagents or media necessary
	* False positives with some Enterobacter spp. possessing AmpC enzymes and porin alterations * False negatives with NDM-1 carbapenemases	* Poor sensitivity for detection	* Poor sensitivity and specificity for carbapenemases in Acinetobacter

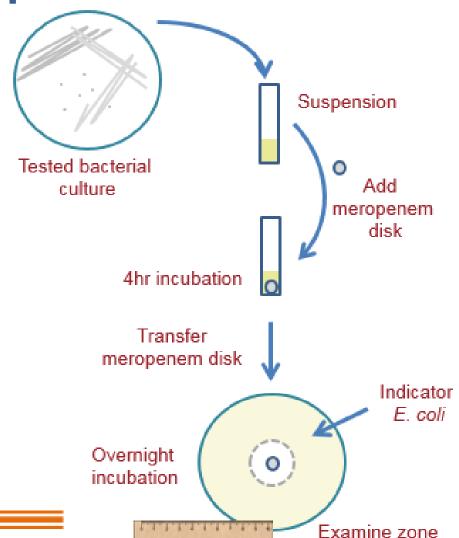
CLSI M100 27th ed. CLSI AST News Update, Vol 2(1), June 2017

How does mCIM work?

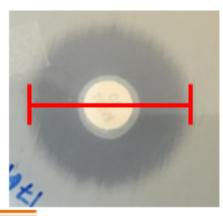
- Meropenem in a disk is inactivated (hydrolyzed) by the carbapenemase produced by bacteria in a bacterial suspension.
- The inactivation of meropenem is determined by transferring and incubating the disk on a plate with meropenem-susceptible indicator E. coli.

➤Carbapenemase producer

Meropenem in the disk is inactivated and allows indicator *E. coli* to grow. No zone or very small zone of inhibition around the disk.


➤Non-carbapenemase producer

Meropenem in the disk retains its activity and inhibits the growth of indicator *E. coli*. A zone of inhibition around the disk



 How is mCIM Performed?

- How is mCIM Result Interpreted?
 - Carbapenemase positive: zone 6-15 mm or presence of colonies within a 16-18 mm zone.
 - Carbapenemase negative:
 zone ≥19 mm.
 - Indeterminate:
 zone 16-18 mm.

6 – 15 mm zone

Colonies in 16-18 mm zone

Negative ≥ 19 mm zone

Indeterminate 16-18 mm zone

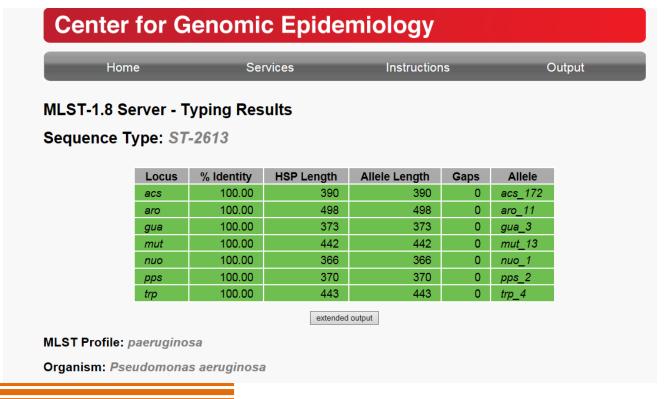
CLSI M100 27th ed.

- Validation of mCIM for CRE and carbapenem-resistant Pseudomonas aeruginosa (CRPA)
 - CRE
- FDA-CDC AR bank isolates: 80
- Carbapenemase type: KPC, NDM, VIM, IMP, OXA, SME, IMI
- CRPA
 - FDA-CDC AR bank isolates: 30
 - Carbapenemase type: KPC, NDM, VIM, IMP, SPM
- Validation Results

	Accuracy	Sensitivity	Specificity	Reproducibility
CRE	100.0%	100%	100.0%	96%
CRPA	96.7%	100%	93.3%	100%

Carbapenemase Gene Detection and Genetic Relatedness by WGS

Hillary Berman Watson, Ph.D. MPH Research Scientist - Core Laboratory Microbial Diseases Laboratory



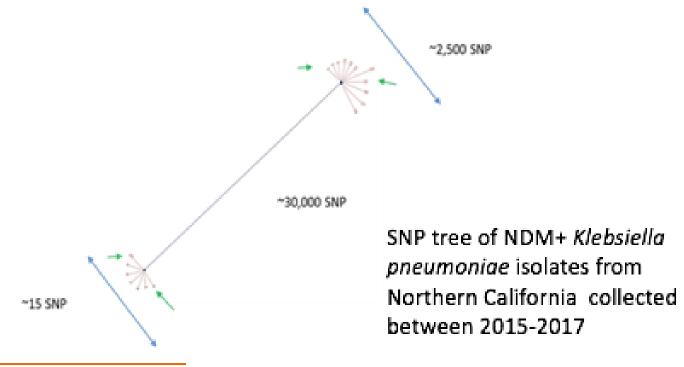
- MDL offers a CLIA validated WGS assay on the Illumina MiSeq sequencing platform
- In some cases this additional genetic testing may be useful.
 - In potential outbreak or cluster investigations, WGS genotyping can help clarify routes of transmission.
- In consultation with your Local Public Health department, MDL and the HAI program epidemiologists, isolates received by MDL may be tested for genetic relatedness.

- WGS assay can be used for
 - Species identification and Multilocus Sequence Typing

- WGS assay can be used for:
 - Antimicrobial Resistance Gene Detection and Identification

Center for Genomic Epidemiology

ResFinder-2.1 Server - Results


- 1	Beta- lactam					
- 1	Resistan ce gene		HSP length/Q uery	Contig	Predicted phenotyp e	
	blaNDM-1	100.00	813 / 813	17C00071_S14_L001_R1_ 001_14 _(paired)_trimmed_(paired) _contig_57	Beta-lactam resistance	<u>FN396876</u>

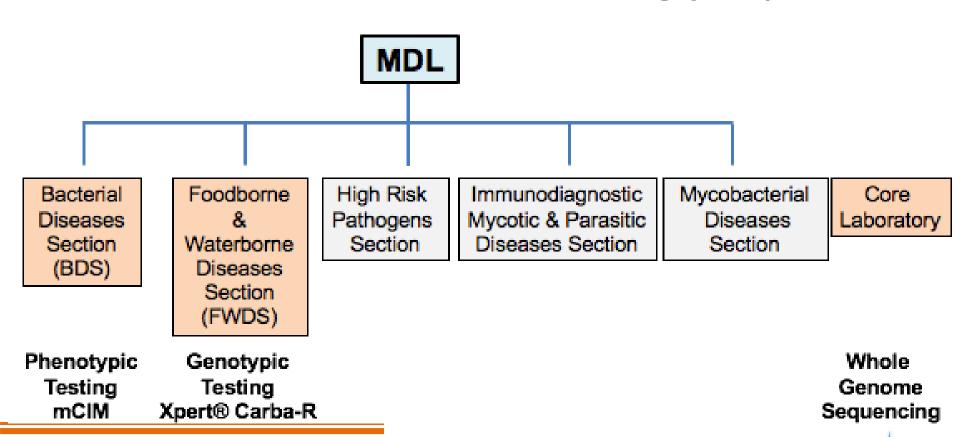
Colistin

No resistance genes found


- WGS assay can be used for:
 - Phylogenetic Analysis including Phylogenetic Trees

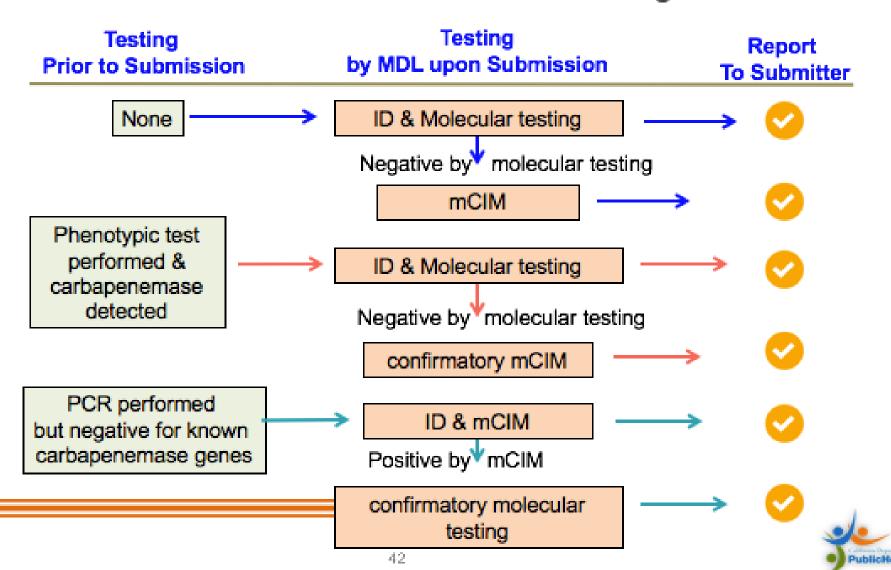
Robin Hogue, CLS, PHM

Section Supervisor – Bacterial Diseases Section Microbial Diseases Laboratory Program

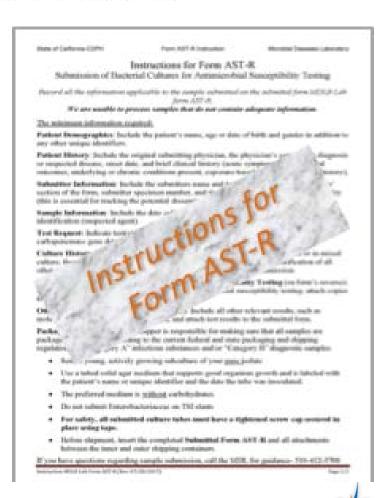


Specimen/Isolate Requirements

- Identified to at least the genus level
- Confirmed as Escherichia coli, Klebsiella oxytoca, Klebsiella pneumoniae, Enterobacter species or Pseudomonas aeruginosa
- Resistant to at least one carbapenem, i.e.,
 imipenem, ertapenem, doripenem, or meropenem
- Pure culture
- Other Enterobacteriaceae organisms are on a case by case basis after consultation with HAI program



CRE/CRPA Antimicrobial Susceptibility Testing Performed in Microbial Diseases Laboratory (MDL)



Different Isolate Submission and Testing Scenarios

Submittal Form: MDLB Lab Form AST-R

PublicHealth

State of California - California Department of Pr	one Hourth	Specimens of Human :	Drigin	,	ficrobial Diseases Ladoratory
Select Test Requisition: Antimicrobial Susceptibili	ty Testing			State MDL ACCES	SION LABEL HERE
Patient - Last Name	First Name	мі ров	Age Units	Gender	Description of Specimen Date Collected Time
Patient Residence Street Address City		County	State	Zip	Material Submitted
Suspected Disease		Onse	t Date Onse	t Date Modifier	Material Comments
Original Submitting Physician		Phone		Material Type N	Modifier
Original Submitting Facility Submitter Specimen # Paris		Travel History		Source	
hublic Health Lab				Test(s) Reques	rted: ∐ carbapenemase gene dete
submitting Facility					ntification of Organism
etum Report To: Name		Phone Fax		3	
Address				Important: Enlar	specific leb findings on 2nd pag
Brief clinical history, symptoms, the	erapy (e.g. treatment rec	selved), treatment outcome			

Antimicrobial Susceptibility Testing - Submitter's Laboratory Findings

ulture made from original clinical sample were:	Pure Mixed
mixed list other organisms:	
aboratory colony counts where applicable (e.g., urine):	
umber of times this organism was isolated from patient	
Medium on which primary growth was obtained:	
Medium on which organisms is being submitted:	Date Inoculated:
Condition of incubation prior to mailing: Temperature	Atmosphere Length
Method used for Identification:	
Please attack a copy of microwal mentification test (
Please attack a copy of wisconormanic patient test i	
	Testing:
Please attach a copy of micropial Susceptibility 1 Method used for Antimicrobial Susceptibility 1 Please attach a copy of antimicrobial susceptibility to	Testing:
Please attach a copy of micrower menujication test of Method used for Antimicrobial Susceptibility 1	Testing:
Please attach a copy of microwal mentification test is Method used for Antimicrobial Susceptibility 1 Please attach a copy of antimicrobial susceptibility to	Testing:

Key Points for Specimen Submission

- Submission forms available by contacting your local public health department
- All isolate submissions should be coordinated and sent through local public health department
 - Comply with local reporting and submission requirements
- Ensure facility information and AST results are communicated with specimen submission

Conclusions

- Carbapenemase testing informs actions to prevent the spread of carbapenemase-producing organisms
- Phenotypic and molecular carbapenemase testing services are available at CDPH MDL and should be coordinated through your local public health department
- CRE isolate submission is encouraged, and may supplement or complement locally available testing

Key Contact Information

mCIM testing:

MDL Bacterial Diseases Section (BDS) Laboratory: (510) 412-3903 Robin Hogue, BDS Reference Bacteriology Unit Supervisor Robin.Hogue@cdph.ca.gov

Peng Zhang, BDS Section Chief Peng.Zhang@cdph.ca.gov

Xpert® Carba-R

MDL Foodborne and Waterborne Diseases Section (FWDS) Laboratory: (510) 412-3796

Greg Inami, FWDS Detection Unit Supervisor Greg.Inami@cdph.ca.gov
Stephanie Abromaitis, FWDS Section Chief Stephanie.Abromaitis@cdph.ca.gov

Whole genome sequencing:

MDL Core Laboratory: (510) 412-3940

Hillary Berman-Watson, Research Scientist Hillary.Berman-Watson@cdph.ca.gov

Core Laboratory General Email Address MDLwgs@cdph.ca.gov

Vishnu Chaturvedi, MDL Lab Director Vishnu.Chaturvedi@cdph.ca.gov

CDPH Healthcare-Associated Infections (HAI) Program:

HAI Program: (510) 412-6060

Sam Horwich-Scholefield, AUR Coordinator <u>Sam.Horwich-Scholefield@cdph.ca.gov</u> Erin Epson, Assistant Chief, Public Health Medical Officer <u>Erin.Epson@cdph.ca.gov</u>

