Example 5.2 University of California San Francisco Medical Center Adult and Pediatric Antibiogram 2013 (1 of 8)

Total isolates include Floor Isola Gram-negative Isolate									•	presents t	op row
Organism	Total Isolates	CZOL	CTRX	CTAZ	CFPM	GEN	тов	T/S	CIP	Р/Т	MER
Acinetobacter baumannii 2013	15	N/A	47	□80	□87	80	87	73	73	67	87
2012	16	N/A	38	63	75	63	69	63	63	63	81
2011	12	N/A	42	50	50	50	83	50	50	42	58
Citrobacter freundii 2013	37	N/A	□57	D 65	97	97	86	70	86	76	100
2012	24	5	75	79	96	88	79	75	75	83	100
2011	37	6	81	81	100	89	86	65	81	89	100
nterobacter aerogenes 2013	43	N/A	63	63	100	100	100	95	95	63	98
2012	40	N/A	70	73	98	95	98	90	95	73	100
2011	27	N/A	74	74	100	96	96	89	96	81	100
Enterobacter cloacae 2013	71	N/A	66	69	99	97	92	75	86	77	100
2012	65	N/A	71	74	100	89	91	77	89	86	100
2011	70	N/A	66	70	96	93	93	79	87	79	100
Escherichia coli* 2013	969	60	85	91	95	86	86	65	69	97	100
2012	810	□60	85	90	95	84	83	65	67	96	100
2011	592	73	88	92	96	87	85	65	68	96	100
(lebsiella oxytoca 2013	44	25	93	100	100	98	100	93	98	91	100
2012	44	36	91	95	100	98	95	86	98	95	100
2011	31	48	94	97	100	97	97	90	100	90	100
Klebsiella pneumoniae 2013	263	84	89	92	96	92	91	84	87	95	100
2012	227	□78	89	91	96	95	92	77	90	93	100
2011	169	86	94	95	99	95	93	78	90	92	100
roteus mirabilis 2013	122	17	99	100	100	91	93	81	□68	100	100
2012	106	□19	97	97	100	90	92	70	80	100	99
2011	60	45	95	98	100	90	94	76	77	100	100
seudomonas aeruginosa**	275	N/A	N/A	83	87	N/A	93	N/A	72	80	80
2013 ICU	88	N/A	N/A	79	83	N/A	96	N/A	81	75	71
2012 ICU	49	N/A	N/A	76	73	N/A	94	N/A	67	71	84
2011 ICU	60	N/A	N/A	87	85	N/A	90	N/A	68	93	78
2013 Non-ICU	187	N/A	N/A	85	89	N/A	91	N/A	68	82	85
2012 Non-ICU	137	N/A	N/A	86	88	N/A	96	N/A	77	85	90
2011 Non-ICU	128	N/A	N/A	90	90	N/A	95	N/A	75	91	90
erratia marcescens 2013	44	N/A	95	100	100	98	100	98	95	100	100
2012	24	N/A	96	100	100	96	92	100	96	100	100
2011	37	N/A	97	100	100	100	95	97	97	100	100
** Pseudomonas aeruginosa isola • *Escherichia coli		nclude iso	lates from	cystic fibro	osis patient	s; "Zosyn	S ≤64; ^b Zo	syn S ≤16		em S ≰4; ^ª Me	ropenem

+ Haemophilus influenzae Stenotrophomonas maltophilia National incidence of β -lactamase production is 37% (2010) Routine antimicrobial susceptibility testing is performed on sterile sites. TMP/SMX is the most active agent versus this organism. Contact ID or ID pharmacy for alternatives.

For more info about this example contact Catherine Liu at catherine.liu@ucsf.edu

CDPH does not endorse the specific content or recommendations included in these examples. They are for illustrative purposes only.

Example 5.2 University of California San Francisco Medical Center Adult and Pediatric Antibiograms 2013 (2 of 8 continued)

	CTX	ERTA	CTAZ	CPIM	CIP	PIPTAZ	MER
All Patients	60% (83%)*	70% (97%)*	85%	93%	80%	88%	94%
ICU	52% (80%)*	63% (97%)*	82%	92%	86%	84%	89%
Floor	63% (84%)*	73% (98%)*	85%	94%	79%	90%	96%
	CTX + CIP	MER+ TOB	PIPTAZ+ TOB	CPIM+ TOB	MER+ CIP	PIPTAZ+ CIP	CPIM+CI P
All Patients	60→87%	94→99%	88→97%	93→97%	94→97%	88→94%	93→95%
ICU	21 → 89%	89→99%	84→95%	92→97%	89→95%	84→93%	92→95%
Floor	32→85%	63 → 99%	90→98%	94→98%	96 → 97%	90→95%	96→98%

*excluding Pseudomonas & Acinetobacter

Pseudomonas Combination Antibiogram Adults

	MER+TOB	PIP+TOB	CPIM+TOB	MER+CIP	PIP+CIP	CPIM+CIP
All Patients	80→97%	80→96%	87 → 95%	80→90%	80→89%	87 → 93%
ICU	71→98%	75 → 97%	83 → 97%	71→89%	75→88%	83 → 93%
Floor	85→95%	82→94%	89→94%	85→92%	82→88%	89 → 92%

Example 5.2 University of California San Francisco Medical Center Adult and Pediatric Antibiograms 2013 (3 of 8 continued)

UCSF ADULT INPATIENT SUSCEPTIBILITY DATA 2013

NA-testing NOT APPLICABLE to organism. PIP-piperacillin, CZOL-cefazolin, CTRX-ceftriaxone, CTAZ-ceftazidime, CFPM-cefepime, GEN-gentamicin, TOB-tobramycin, T/S-trimethoprim/sulfamethoxazole, CIP-ciprofloxacin, MER-meropenem, P/T-piperacillin-tazobactam, PCN-penicillin, NAF-nafcillin, ERY-erythromycin, CLIN-clindamycin, DOX-doxycycline, VANC-vancomycin, AMP-ampicillin Total isolates include Floor Isolates and ICU Isolates from UCSF and Mt. ZIon Hospitals (Does not include Outpatient)

Gram-positive Isolates (% Strains Susceptible, tested from all sites) 2013 data represents top row

Organism	Total Isolates	PCN	NAF	ERY	CLIN	CIP	DOX	T/S	VANC
Staphylococcus aureus* 2013	596	0	58	33	65	55	92	93	99
2012	651	0	57	42	□63	53	93	95	99
2011	483	5	61	44	70	60	95	94	100
MRSA 2013	249	N/A	N/A	7	50	21	93	93	99
MRSA 2012	280	N/A	N/A	10	45	17	88	94	98
MRSA 2011	191	N/A	N/A	10	53	48	95	94	100
MSSA 2013	347	0	100	51	76	80	91	93	100
MSSA 2012	371	0	100	66	77	80	96	95	100
MSSA 2011	293		100	66	80	48	95	95	100
Staphylococcus epidermidis 2013	155	0	43	D 13	71	46	88	57	100
2012	212	0	35	33	69	47	82	48	100
2011	251	6	43	41	69	48	84	56	100
Streptococcus pneumoniae [†] 2013	72	See below	N/A	64	68	N/A	59	55	100
2012	56	See below	N/A	55	74	N/A	73	□38	100
Pamassus 2011	23	See below	N/A	61	83	N/A	74	70	100
Mount Zion 2011	3	See below	N/A	33	33	N/A	33	67	100

Rates prior to 2012 do not include Mt. Zion strains
 * "Staphylococcus aureus
 Outpatient Nafcillin susceptibility is 76% (Previously 76, 72, 70, 69%). Nafcillin resistance predicts
 cephalosporin resistance.

Adult Inpatient	Vancomycin MIC	Distribution for S.	aureus

Addit inpatient	variconfycht who bistribation for 6. a	10/005
Vancomycin MIC (All S. aureus)	2012	2013
0.5	1.86% (12/645)	2.7% (16/588)
1	92% (594/645)	91.2% (536/588)
2	5.74% (37/645)	5.6% (33/588)
4	0.31% (2/645)	0.34% (2/588)
Vancomycin MIC (MRSA only)		
0.5	0.72% (2/276)	1.2% (3/248)
1	92% (255/276)	88.7% (220/248)
2	6.2% (17/276)	9.3% (23/248)
4	0.72% (2/276)	0.8% (2/249)

Adult Outpatient Susceptibilities for S. aureus

	7	. outputiont .					
Outpatient 2013	Total Isolates	ERY	CLIN	CIP	DOX	T/S	VANC
Staphylococcus aureus	669	52	72	71	92	96	99
MRSA	(24%) 163	7	51	23	89	94	98.1
MSSA	506	61	79	86	92	96	99.6
Outpatient 2012	Total Isolates	ERY	CLIN	CIP	DOX	T/S	
Staphylococcus aureus	630	47	68	64	91	94	
MRSA	178	10	57	19	90	93	
MSSA	452	62	73	82	91	95	

Enterococcus species

Enterococcus faecalis species are 100% AMP susceptible. Enterococcus faecium can be multi-drug resistant. Check vancomycin susceptibilities for all isolates from sterile sites. The addition of gentamicin (1 mg/kg Q8h) is required for bactericidal activity in serious systemic enterococcal infections. Of 100 (99, 88, 89, 88) enterococcal bacteremias in 2013 (2012, 2011, 2010), 57 (62, 66, 51) were due to

For more info about this example contact Catherine Liu at catherine.liu@ucsf.edu

CDPH does not endorse the specific content or recommendations included in these examples. They are for illustrative purposes only.

Example 5.2 University of California San Francisco Medical Center Adult and Pediatric Antibiograms 2013 (4 of 8 continued)

¹ Streptococcus pneumoniae	and 46/72 ceftriaxon susceptib NOTE: Fo added to a	I isolates, 65% (47/72 iso 2 (64%) erythromycin sus the susceptible. Among bi le, and 100% vancomyci or the treatment of mening the regimen since failures eration cephalosporins.	ceptible. Am bod and CSF n susceptible tis, pending a	nong PCN-no isolates, 71 e. susceptibilitie	nsusceptible % were sus	e isolates, ceptible to	13/17 (76 PCN, 93 ⁴ ould be	3%) were % ceftriax
		Inpatient Adult Enterod	occal Blood	d Isolates				
		Inpatient Adult Enteroo Total Isolates	occal Blood Amp	d Isolates Dapto*	Linez	Q/D	Tetr	Vanc
Enterococcus faecalis	2013				Linez	Q/D 0%	Tetr 10%	Vanc 100%
Enterococcus faecalis		Total Isolates	Amp	Dapto*				
Enterococcus faecalis	2013	Total Isolates 38	Amp 100%	Dapto* 100%	100%	0%	10%	100%
	2013 2012	Total Isolates 38 42	Amp 100% 100%	Dapto* 100% 100%	100% 100	0% 4%	10% 20%	100% 100%
	2013 2012 2011	Total Isolates 38 42 26	Amp 100% 100% 100%	Dapto* 100% 100% 100%	100% 100 100	0% 4% 8%	10% 20% 23%	100% 100% 96%
Enterococcus faecalis Enterococcus faecium	2013 2012 2011 2013	Total Isolates 38 42 26 57	Amp 100% 100% 100% 13%	Dapto* 100% 100% 90%*	100% 100 100 91%	0% 4% 8% 100%	10% 20% 23% 30%	100% 100% 96% 19%

Dapto MIC distribution: All isolates: <=0.5: 14% 1: 25% 2: 37% 4: 19% >4: 6% VRE: <=0.5: 4% 1: 14% 2: 48% 4: 24% >4: 10%

CDPH ASP Toolkit 2015

Example 5.2 University of California San Francisco Medical Center Adult and Pediatric Antibiograms 2013 (5 of 8 continued)

Total isolates include Flo						DOX-doxy					IGHIII	
Gram-negative is											sents top	row
Organism		Total isolate	CZOL	CTRX	CTAZ	CFPM	GEN	тов	T/S	CIP	P/T	MER
Acinetobacter baumannii	2013	s 0	0	0	0	0	0	0	0	0	0	0
	2012	3	N/A	0	100	100	100	100	100	100	100	100
	2011	4	N/A	50	100	75	100	100	100	100	75	100
Citrobacter freundii	2013	з	0	↓33	↓33	100	100	□100	□100	100	↓33	100
	2012	5	N/A	80	80	100	80	60	60	100	100	100
	2011	5	0	40	40	100	80	80	80	80	60	100
Enterobacter aerogenes	2013	8	0	63	63	100	100	100	88	100	63	100
	2012	4	N/A	50	50	100	100	100	100	100	50	100
	2011	5	0	60	40	80	100	100	80	80	60	100
Enterobacter cloacae	2013	17	0	53	53	100	94	94	88	100	□82	100
	2012	22	N/A	32	41	100	86	82	73	95	64	95
	2011	31	0	56	55	100	91	91	78	91	72	100
Escherichia coli*	2013	103	70	93	96	97	94	94	65	90	97	100
	2012	83	70	95	98	98	94	93	71	93	95	100
	2011	68	69	90	96	97	93	91	71	85	99	100
Klebsiella oxytoca	2013	10	30	100	100	100	100	100	100	100	80	100
	2012	17	024	88	100	100	100	100	82	94	88	100
	2011	15	67	100	100	100	100	93	100	100	100	100
Klebsiella pneumoniae	2013	35	60	91	91	97	97	91	□91	94	94	100
	2012	30	73	90	90	100	87	83	□67	90	100	100
	2011	19	84	95	100	100	89	95	97	95	95	100
Proteus mirabilis	2013	9	44	100	100	100	100	100	↓89	100	100	100
	2012	4	↓ 0	100	100	100	100	100	□100	100	100	100
	2011	6	50	100	100	100	100	100	50	100	100	100
Pseudomonas aeruginosa	a**	40	N/A	N/A	88	96	100	100	N/A	92	88	88
	2012	20	N/A	N/A	95	95	100	100	N/A	100	100	95
Peds ICU	J 2013	19	N/A	N/A	79	92	100	100	N/A	92	82	84
Peds ICU	J 2012	9	N/A	N/A	100	100	100	100	N/A	100	89	100
Non-ICl	J 2013	24	N/A	N/A	96	100	0	100	N/A	93	93	93
Non-ICl	J 2012	14	N/A	N/A	93	93	100	100	N/A	93	100	93
Serratia marcescens	2013	11	N/A	↓73	100	100	100	100	100	100	91	100
	2012	13	N/A	100	100	100	100	100	92	100	100	100
	2011	8	N/A	88	100	100	100	100	100	100	88	100

** Pseudomonas aeruginosa isolates do not include isolates from cystic fibrosis patients; "Zosyn S ≤64; "Zosyn S ≤16; "Meropenem S ≤4; "Meropenem S ≤2

For more info about this example contact Catherine Liu at catherine.liu@ucsf.edu

CDPH does not endorse the specific content or recommendations included in these examples. They are for illustrative purposes only.

CDPH ASP Toolkit 2015

Example 5.2 University of California San Francisco Medical Center Adult and Pediatric Antibiograms 2013 (6 of 8 continued)

All Patients	Mero+ To		iptazo+Tobra	Cefepime+Tobra	Mero+Cipro	Piptazo+Cipro	Cefepime+Cipro
All Pallents	88→100	1%	88→100%	96 → 100%	88→94%	88 →94%	96 → 98%
ll Gram-n	egatives A	ntibioar	am PEDS				
	CTX	ERTA	CTAZ	CPIM	CIP	PIPTAZ	MER
JI .	51%	67%	81%	97%	93%	85%	96%
atients	(75%)* CTX+	(98%)* Mero+	Piptazo+	Cefepime+	Mero+	Piptazo+	Cefepime+
di l	CIP	Tobra	Ťobra	Tobra	Cipro	Ċipro	Cipro 96→98%
atients	51→95%	96→100%	% 85→99%	97→99%	94→98%	85→98%	90796%
Escherichia c	coli*	Ou TM 979 onl	tpatient cefazolin/ IP/SMX susceptibi % (93, 95, 91%). I v be used for unc	Cephalexin susceptibil ility is 74% (69, 69, 70 Nitrofurantoin suscepti omplicated UTIs in pat	ity is 79% in 2013 (%). Outpatient cipr bility is 100% (100 tients with CrCl >60	(78, 85, 92%). Outpa ofloxacin susceptibil , 98, 99%) and shou) mL/min.	atient ity is Id
Haemophilus	influenzae			f β-lactamase producti			
	nonas maltophi	Ro		I susceptibility testing i		arile sites and overio	
				P/SMX is the most act			

Example 5.2 University of California San Francisco Medical Center Adult and Pediatric Antibiograms 2013 (7 of 8 continued)

UCSF PEDIATRIC SUSCEPTIBILITY DATA 2013 N/A-testing NOT APPLICABLE to organism. PIP-piperacillin, CZOL-cefazolin, CTRX-ceftriaxone, CTAZ-ceftazidime, CFPM-cefepime, GEN-gentamicin, TOB-tobramycin, T/S-trimethoprim/sulfamethoxazole, CIP-ciprofloxacin, MER-meropenem, P/T-piperacillin-tazobactam, PCN-penicillin, NAF-nafcillin, ERY-erythromycin, CLIN-clindamycin, DOX-doxycycline, VANC-vancomycin, AMP-ampicillin Total isolates include Floor Isolates and ICU Isolates from UCSF and Mt. Zion Hospitals (Does not include Outpatient)

Gram-positive isolates (% strains susceptible, tested from all sites) 2013 data represents top row

Organism		Total Isolates	PCN	NAF	ERY	CLIN	CIP	DOX	T/S	VANC
Staphylococcus aureus	2013	93	0	63	50	85	74	94	99	100
	2012	127	0	69	54	71	75	91	92	99
	121	5	79	59	78	83	94	95	100	
MRS	A 2013	34	N/A	N/A	23	82	41	100	97	100
MRS	A 2012	39	N/A	N/A	5	38	□38	97	87	100
MRS	A 2011	26	N/A	N/A	15	64	73	100	92	100
MSS	A 2013	59	N/A	100	65	87	95	91	100	100
MSS	A 2012	88	0	100	75	85	0 91	88	94	99
MSS	A 2011	95			71	82	73	93	96	100
Staphylococcus epidermidis	2013	25	0	20	↓4	60	56	88	48	100
	2012	44	0	30	25	70	65	86	45	100
	2011	46	2	26	30	57	74	85	65	100
Streptococcus pneumoniae [†]	2013	25	See below	N/A	68	70	N/A	64	50	100
	2012	32	See below	N/A	75	60	N/A	76	29	100
	2011	6	See below	N/A	50	83	N/A	67	83	100

† Rates prior to 2012 do not include Mt. Zion strains

*Staphylococcus aureus

Outpatient Nafcillin susceptibility 79% (79, 74, 77, 76%) (Nafcillin resistance predicts cephalosporin resistance).

Pediatric Inpatient Vancomycin MIC Distribution for S. aureus

Vancomycin MIC (All S. aureus)	2012	2013
0.5	0% (0/126)	1.1% (1/91)
1	93% (117/126)	94.5% (86/91)
2	7% (9/126)	4.4% (4/91)
Vancomycin MIC (MRSA only)		
0.5	0% (0/39)	2.9% (1/34)
1	85% (33/39)	91.2% (31/34)
2	15% (6/39)	5.8% (2/34)

Pediatric Outpatient Susceptibilities for S. aureus

Outpatient 2013	Total Isolates	ERY	CLIN	CIP	DOX	T/S	VANC
Staphylococcus aureus	226	55	86	83	92	95	100
MRSA	(21%) 47	18	74	50	91	87	100
MSSA	179	65	89	91	92	97	100
Outpatient 2012	Total Isolates	ERY	CLIN	CIP	DOX	T/S	
Staphylococcus aureus	148	57	86	82	96	99	
MRSA	38	11	87	53	90	100	
MSSA	110	73	86	92	98	99	

Example 5.2 University of California San Francisco Medical Center Adult and Pediatric Antibiograms 2013 (8 of 8 continued)

Enterococcus spp.	multi-dru The add systemic	ooccus faecalis species are ug resistant. Check vanco dition of gentamicin (1 mg/ c enterococcal infections. ancomycin-resistant.	a 100% AM mycin sus kg Q8h) is Of 13 (18,	AP susceptible ceptibilities for required for I 23, 23, 31) e	e. Enteroco or all isolate bactericidal enterococca	occus faed s from ste activity ir I bacteren	cium can erile sites. 1 serious nias in 20	be 013,
 [†]Streptococcus pneumoniae 	suscepti 1/6 (16% There w NOTE: 1 should have be	all isolates. 64% (16/25 iso ible. and 68% ervithromvci %) were certriaxone susce were no isolates from blood For the treatment of mei be added to the regiment een reported with ALL the langtight Bodiatria Enter	n suscepti ptible. and f or CSF. ningitis, p n since fai ird genera	ble. Amona F 100% were v ending susc flures (due to ation cephal	² CN-nonsu: vancomycir eptibilities b highly re: osporins.	sceptible i suscepti	solates, ble.	y
		Inpatient Pediatric Enter	ococcai E	loou isolate	0			
		Total Isolates	Amp	Dapto	Linez	Q/D	Tetr	Vanc
Enterococcus faecalis	2013	•				Q/D 0	Tetr 27	Vanc 100
Enterococcus faecalis		Total Isolates	Amp	Dapto	Linez			
Enterococcus faecalis	2013	Total Isolates 10	Amp 100	Dapto 100	Linez 100	0	27	100
Enterococcus faecalis Enterococcus faecium	2013 2012	Total Isolates 10 15	Amp 100 100	Dapto 100 100	Linez 100 100	0	27 0	100 100

Other Enterococcal species