[image: image13.png]

California Department of Health Services

Web Application Architecture
Version 5
Revised Jan 13, 2007
Revision 5.2.4

Web Application Architecture
This volume presents the latest Web Application Architecture (WAA) to the California Department of Health Services (CDHS).
The WAA is intended to provide a common architecture for DHS web applications, facilitate cost effective implementation of high-quality web applications, reduce web application life cycle costs, and maximize the department’s return on web application investments.
The WAA attempts to ensure the security, performance, robustness, scalability, availability, and operability of all CDHS web applications.
The WAA applies to the department’s web applications and web infrastructure. It provides direction to divisions, offices and all other operating units which sponsor, define, design, develop, test, deploy, host, operate, or change CDHS web applications.
The WAA is a strategic asset for exposing CDHS to the many benefits derived from standardized web application architecture.
Implementation Details

For detailed instructions and code samples on how to implement the CDHS standards and satisfy code review requirements press CTRL-Click on any of the
click for details links in this document for the items of interest
Note: the above is not an actual link but just an example of what to look for in this document
Department of Health Services
Web Application Architecture
TABLE OF CONTENTS

11
Introduction

11.1
Objectives and Benefits

21.2
Access to the Web Architecture Center

21.3
Implementation Requirements and Exemptions

21.4
Changes to the WAA

21.5
Definitions

42
ITSD Services

42.1
Shared Enterprise System Hosting

42.2
Developer Orientation Class

42.3
Developer Services

52.4
Developer Responsibilities

63
Network Architecture Overview

63.1
Intranet Zone

73.2
Extranet Zone

73.3
Internet Zone

83.4
Port Restrictions and Configuration

104
N-Tier Architecture

104.1
Logical View of the n-Tier Architecture

104.2
Physical View of the n-Tier Architecture

104.3
Technology View of the n-Tier Architecture

114.4
Guidance for the n-Tier Architecture

124.5
N-Tier Implementation Overview

145
Server Configuration Settings

145.1
.NET Configuration Settings

145.2
.NET 2.0 specific setting

155.3
Active Directory (AD) Configuration

166
Security Principles

166.1
Principles for Web Application Security

177
Authentication [CR 200]

177.1
Intranet Zone Authentication

177.2
Extranet Zone Authentication

177.3
Internet Zone Authentication

178
Authorization [CR 200]

178.1
Role Based Security

188.2
Intranet Zone Authorization

188.3
Extranet Zone Authorization

188.4
Internet Zone Authorization

199
Database Security Procedures

1910
Application Security Procedures

1910.1
User Input Validation [CR 203]

2010.2
Exception Handling [CR 204]

2010.3
Calling Web Services [CR 201]

2010.4
Web Service Validation [CR 302]

2010.5
Unmanaged Code Validation [CR 302]

2110.6
Path Validation [CR 302]

2110.7
Client Side Components [CR 10]

2110.8
Isolated Storage [CR 12]

2110.9
Protecting Viewstate [CR 205/206]

2110.10
Code Access Security (CAS) and Trust Levels [CR 202/301]

2210.10.2
CDHS “Medium Trust” Policy

2210.10.3
Custom Configuration Files and Sandboxing Code

2410.11
Forms Authentication .NET 2.0 [CR 209]

2410.12
Required Security Attributes

2611
Secure Code Requirements [CR 205/206]

2611.1
Cookies

2611.2
Mapping Paths

2611.3
Server.Transfer

2611.4
Passing Fixed Parameters to Pages

2611.5
DataSource controls

2711.6
Site Maps

2711.7
Request Validation

2711.8
Session Timeout

2711.9
WebConfigurationManager

2711.10
ATLAS (or any Ajax implementation) [CR 207]

2811.11
WSE 3.0 [CR 600]

2811.12
Web Parts

2811.13
Secure Classes [CR 208]

2811.13.1
Security.Principal / Security.AccessControl

2811.13.2
System.Diagnostics – Process.Start()

2811.13.3
DirectoryServices

2911.13.4
Reflection

2911.13.5
ExecutionContext.SurpressFlow

2911.13.6
ConnectionStringBuilder

3012
ADA Compliance and Section 508 [CR 220]

3012.1
ADA Compliance Check List

3013
Application Life Cycle Processes

3113.1
Define Process

3113.2
Design Process

3213.3
Development Process

3513.4
Code Standards

3513.4.1
Base Classes [CR 401]

3513.4.2
Default Web Page [CR 210]

3513.4.3
ASP.NET 2.0 Compilation Model [CR 402]

3513.4.4
ASP.NET 2.0 Configuration Files

3713.5
Deployment and Change Control Process

3913.6
Test Process

4114
Implementation Details

4115
Guidance for the n-Tier Architecture

4116
Authentication

4317
Authorization

4518
Application Security Procedures

4518.1
User Input Validation

4518.2
Cookie and QueryString Validation

4918.3
Validation Controls

4918.4
Exception Handling – Catch Un-Handled Exceptions

5018.5
Calling Web Services and Passing Credentials

5218.6
Web Service Parameter Validation

5218.7
Path Validation

5218.8
Protecting Viewstate

5318.9
Sandbox Code

5418.10
Forms Authentication

5618.11
SecurityCritical / SecurityTransparent

5719
Web Parts

5820
ADA Compliance Check List

6321
Project Initialization

6422
Links and Documents of Interest

6623
Revision History Log

1 Introduction
1.1 Objectives and Benefits
Maximize CDHS Return on Web and Infrastructure Investments

The WAA acts as a guide for web application investments consequently reducing the risk of web application failure.
The WAA is a guide for developing web applications that are easier to deploy, manage, and use.
The WAA maximizes return on web application investments by reusing existing skills, increased interoperability, increased reliability, leverage industry standard practices, and aiding in troubleshooting. The WAA defines standards from which reusable code, components, and services can be created.

Increase the Quality of CDHS Web Applications
Quality Assurance Gates (QAG) discovers issues earlier in the development process where it costs less and before they increase risk.
Reusable code, components, and services increase the quality of developed web applications and enterprise services.
Reduce Web Application Life Cycle Costs and Risk
An application life cycle model separates a web application’s life-cycle concerns into distinct and manageable processes.

By improving web application quality, the WAA reduces operating costs.
Reusable components and services reduce the cost of defining, designing, developing, testing, deploying, operating, maintaining and changing web applications and enterprise services.
Increase Web Application Security
The WAA defines requirements and processes to ensure that CDHS web applications and enterprise services meet the ‘CDHS IT Security Policy and Plan’ requirements.
Reusable security components (‘security black boxes’) encapsulate WAA security architecture to hide sensitive CDHS network and web security from developers, making security easier for developers to implement.
Ensure CDHS Web Application Requirements are Met or Exceeded
Approaches outlined within the WAA improve developers’ ability to meet security, scalability, availability, maintainability and operability requirements.
WAA quality gates support performance objectives in these application life cycle processes: define, design, develop, test, and operate.
Reusable components and services reduce the cost of meeting web application requirements.

1.2 Access to the Web Architecture Center

If you cannot gain access to the Web Architecture Center then you can request documentation from it directly from the Internet Unit. The WSU can be contacted at inetinfo@dhs.ca.gov or by calling the unit lead at +1.916.440.7226.
1.3 Implementation Requirements and Exemptions
The WAA presents requirements for all CDHS operating units.
Those responsible for establishing and enforcing web application and web infrastructure policy are identified in the WAA.
No exceptions to compliance with the WAA are allowed.
1.4 Changes to the WAA
The WAA is reviewed and updated twice a year to address changes in technology and business requirements. More frequent updates may occur as necessary. Ongoing review of this document ensures accuracy and compatibility with business objectives.
Many items may drive change to the WAA: changes in technology, security, business requirements, and specific requests.
1.5 Definitions
The following words, phrases, and acronyms are used in this document.

	Term
	Definition

	[CR n]
	Indicates a code review rule where n is the code review rule number from the ‘CDHS ITSD Code Review Checklist’ document. Visit the WAC for a copy of this document.

	Application Life Cycle Architecture
	International Standard ISO/IEC 12207 establishes an application life cycle architecture that can be used to structure management of an application from idea to retirement. The architecture is a set of processes and the interrelationships among the processes.

	CDHS
	California Department of Health Services

	WSU
	Web Services Unit

	n-Tier
	Software engineering defines n-tier architecture (often referred to as multi-tier architecture) as an architecture in which an application is executed by more than one distinct software agent.

	Quality Assurance Gates
	Quality Assurance Gates are periodic tests and reviews that determine whether the quality of the product at one stage is sufficient to support moving on to the next.

	Role-Based Security (.NET)
	The Microsoft.NET functionality to perform authorization checks by using identity and principal-related objects directly, or by using imperative or declarative permission checks.

	Single Solution Model (.NET)
	With the single solution model a developer creates a single Visual Studio .NET solution and uses it as a container for all of the projects defined by an application.

	SSU
	SQL Server Unit

	WAC
	Web Architecture Center – An ITSD web site containing information related to the WAA, ITSD services, developer responsibilities, and other web architecture information. To visit the WAC on the CDHS Intranet click -> WAC

	WAA
	CDHS Web Application Architecture

2 ITSD Services
2.1 Shared Enterprise System Hosting

CDHS offers shared enterprise systems for web application development and hosting. To learn more read the ‘CDHS Shared Enterprise Systems’ document in the WAC
2.1.1 Shared Enterprise Test Systems
CDHS offers shared enterprise development test servers for web application development. To learn more read the ‘CDHS Shared Enterprise Systems’ document in the WAC.

ITSD teams may assist with application testing to determine the impact of the application on the hosting environment.
2.1.2 Shared Enterprise Production Systems

CDHS offers shared enterprise production servers for CDHS web applications. To learn more read the ‘CDHS Shared Enterprise Systems’ document in the WAC.
2.2 Developer Orientation Class
This class introduces CDHS ITSD services for developers and summarizes web developer responsibilities.
For more information related to the WAA, ITSD services, and developer responsibilities visit the Web Architecture Center (WAC) on the CDHS Intranet.
2.3 Developer Services
ITSD provides services to help developers utilize the WAA and ITSD web infrastructure. Examples include training, code examples, server build specifications, diagrams, desktop specifications, interfaces, component development, web service development, testing, design review, and hosting.

Confidential technical documentation of security, server builds, processes, naming standards, and software configurations is available on a need-to-know basis. Management approval and a signed confidentiality and non-disclosure agreement are required to access this information.
.
2.4 Developer Responsibilities

	Developer Responsibilities Checklist

	
	Visit and get familiar with the WAC. Documents, policies, and other artifacts referenced by the WAA can be found in the WAC.

	
	Use the ‘Remedy Help Desk’ link on the WAC home page to enroll in the ITSD mandatory ‘Developer Orientation’ course. This required three-hour course introduces the WAA and the CDHS development environment.

	
	Comply with WAA requirements.

	
	Comply with applicable regulations and policies. CDHS web sites must comply with federal and state regulations as well as CDHS policy. For more information see the ‘CDHS Policy Links for Web Developers’ document in the WAC.

3 Network Architecture Overview
The CDHS network is segmented into three main network security zones:
Intranet, Extranet, and Internet.
3.1 Intranet Zone

The CDHS Intranet is the private and secure network zone for conducting the internal business of the CDHS. Web applications in the Intranet zone operate exclusively within that zone.

3.1.1 Connecting to the Intranet Zone

Access to the Intranet requires a direct connection to the private LAN/WAN and an account in the Intranet zone’s Active Directory.

3.1.2 Secure Communication in the Intranet Zone
Intranet Communication is not encrypted and behind a firewall.

[image: image1.emf]DHS Intranet: Active Directory

WebApplicationDatabase

DHS Intranet: Production

WebApplicationDatabase

DHS Intranet: Test

Legend

Authentication & Authorization

Developer Connection

User Connection

WebApplicationDatabase

DHS Intranet: Development

Visual Source Safe

HHSDC

Resources

Reporting Web

Reporting

Application

DHS Extranet App Zone:

Business Intelligence

Logical Seperation

Production

Production

Test

Reporting Web

DHS Intranet: Business Intelligence

BO Reporting Database

DHS Intranet Security Zone

`

User

`

Developer

3.2 Extranet Zone

The CDHS Extranet is the private network zone for sharing CDHS web applications and network resources with its trusted business partners. Extranet Web applications operate exclusively within the Extranet zone.
3.2.1 Connecting to the Extranet Zone

Access to the Extranet requires an Internet connection and an account in the Extranet zone’s Active Directory.

3.2.2 Secure Communication in the Extranet Zone

Communication in the Extranet is secured by SSL.

3.2.3 Intranet Users in the Extranet

If appropriate include transaction and reporting interfaces for CDHS Intranet users in Extranet web applications.

3.2.4 Extranet Zone Tiers
Note: The Extranet is subdivided into three physical network segments: Web Tier, Application Tier and Data Tier.

[image: image2.emf]Internet

DHS Extranet Security Zone

`

Web Client

Web Tier

Firewall

Firewall

Application Tier

Data Tier

Active Directory

Firewall

Application Server

Database Server

Client Tier

Web Server

3.3 Internet Zone

The CDHS Internet is an un-trusted network zone for public use.
3.3.1 Connecting to the CDHS Internet Zone

Access to the CDHS Internet zone requires an Internet connection.

3.3.2 Secure Communication in the CDHS Internet Zone

Communication may or may not be encrypted in the Internet zone. If a web application requires secure communication in the Internet zone contact the WSU for authorization options.
· Sensitive data may not be used in the Internet zone.

· SQL Servers in the Internet zone cannot be databases of record.
· Internet server access to the domain controller and databases in the CDHS Intranet are blocked.

A CDHS web application in the Internet zone may use a SQL Server in the Internet zone to provide reporting and data editing services to Internet users. A replication server in the Intranet zone can selectively and securely replicate non-sensitive data from Intranet zone databases to databases in the Internet zone. Data can be streamlined by horizontally and vertically partitioning it during the replication process.

[image: image3.emf]Internet

DHS Internet Security Zone

`

Web Client

Web Tier

Database Server

Client Tier

Firewall

Web Server

Web Server

3.4 Port Restrictions and Configuration
3.4.1 Port Restrictions in the Intranet and Extranet Security Zones

Only port 443 (SSL) is opened between a web server and an application server. Port 1433 is removed to prevent direct communication between the web server and the database.
3.4.2 Minimum Web, Application, Database Port Configuration

	Port
	Description

	80/TCP
	Hypertext Transfer Protocol (HTTP)

	88/UDP
	Kerberos Computer Network Authentication Protocol

	389/TCP
	Lightweight Directory Access Protocol (LDAP)

	443/TCP
	Hypertext Transfer Protocol with data encryption from either a version of SSL (Secure Socket Layer) protocol or TLS (Transport Layer Security) protocol.

	636/TCP
	LDAP over SSL

	1433/TCP
	For communication with SQL Server. Check with the SQL Server Unit for the correct port specification.

4 N-Tier Architecture
The WAA prescribes an n-Tier architecture for web applications
Note: Service oriented architecture (SOA) is currently under study. If a web application is considering SOA then WSU may be interested in discussing it further.
4.1 Logical View of the n-Tier Architecture
A CDHS web application’s code must be separated into five logical tiers: Presentation, User Interface, Business Logic, Data Access, and Data Tier.
[image: image4.png]
4.2 Physical View of the n-Tier Architecture
A CDHS web application’s logical tiers are deployed to four physical tiers: Client, Web Server, Application Server, and Database Server.
[image: image5.png]
4.3 Technology View of the n-Tier Architecture

CDHS has selected Microsoft technologies for implementing the logical and physical tiers. They include Internet Explorer on the intranet and extranet, Windows Server, Windows IIS, .NET Framework, Data Access Application Block, and SQL Server. NOTE: Internet applications will also support Mozilla Firefox
[image: image6.png]
4.4 Guidance for the n-Tier Architecture

click for details
4.4.1 Supported Web Browsers
The CDHS browser standard is Microsoft Internet Explorer (IE) 6.0+ on both the intranet and extranet. The internet will add support for Mozilla Firefox.
For web sites accessed by CDHS employees:
Contact the ITSD Client Technology Unit for browser version requirements.
If a specific business unit will use the application:
Contact the local LAN Administrator for browser version requirements.
For business partners:
Applications may use the lowest level browser supported by the customer.
4.4.2 Compliance Concerns for User Interfaces
CDHS user interfaces must comply with federal and state regulations and CDHS policies. CDHS has some templates to help web applications comply. For more information see the ‘CDHS Policy Links for Web Developers’ document in the WAC.
4.4.3 Database Servers
Sql Server

· Please refer to the ITSD Sql Server Unit for current database standards.
Others

· If you have a business need that requires support for accessing database servers other than Microsoft Sql Server, we encourage you to expose this in the course of your project initiation so that alternatives may be discussed and considered.

Note: The use of new technologies such as Asp.Net 2.0 and Sql Server 2005 do not in any way change the n-tier architecture presented in this document. For example you can not access web services or sql server directly from a web server even though the capability to do so may be provided by the new technology.

4.5 N-Tier Implementation Overview
4.5.1 Web Server - User Interface Tier

The UI tier must be implemented using ASP.NET web page(s).

4.5.2 Application Server - Business Logic Tier

The business logic tier must be implemented as ASP.NET web service(s).

4.5.3 Application Server - Data Access Tier

[CR 40]
The Data Access Tier must use Microsoft's Data Access Block.

NET 1.1 - Use Microsoft’s Data Access Application Block (MDAB) to implement the data access tier as a .NET component.

NET 2.0 - Use the WSU version of Microsoft’s Enterprise Library January 2006 Data Access Application Block (MDAB) to implement the data access tier as a .NET component available at: \\dhssacint43\dotNET
The WSU version allows the library to run in Medium trust mode which is required. The WSU version is supplied as both a patch (to allow you to upgrade your version) or as pre-complied DLL’s.

[image: image7.emf]Web Server

ASP.NET

Web Page

Application Server

ASP.NET

Web

Service

Data

Access

Block

Database

SQL Server

4.5.4 SQL Server – Data Tier
Please refer to the ITSD SQL Server Unit for current standards
A CDHS web application uses the trusted subsystem model to implement interaction between its business logic tier and its SQL Server Database.
The web service must call to the database using a trusted service identity having the minimum amount of permissions needed to perform a particular action in the database (least privileged account. The Sql Server Unit will supply the account to be used.

4.5.5 Flowing Credentials and Authorization across Tiers

4.5.6 click for details
A variation of the Trusted Sub-System model is also used between the Web and Applications Servers. The current user is impersonated on the web server and their credentials are passed along to the web service on the Application Server.

· The web page impersonates and authorizes the user to call the web service
· The web service authorizes the caller and then runs under a fixed service account with the minimum permissions needed to access system resources
· The web service calls to the database through the DAB using a fixed service account with the minimum permissions needed to access the database.

[image: image8.emf]ClientWEB SERVERAPPLICATION SERVERSQL SERVER

User A

User AFixed Account

WEB PAGE

Impersonation=True

Authorization

User.IsInRole()

WEB SERVICE

Impersonation=False

Authorization

User.IsInRole()

Fixed Account Process

5 Server Configuration Settings

5.1 .NET Configuration Settings
Server level configuration setting implemented by ITSD on all servers in al zones using the appropriate config file as per the .NET version (ie. machine.config for .Net 1.1 or root level web.config for .Net 2.0)
<system.web>

<trust level=”Medium” />
<webServices>

 <protocols>

<add name="HttpSoap1.2"/>

<add name="HttpSoap"/>

<add name="HttpPostLocalhost"/>

 </protocols>

<pages
enableViewState="true"
enableViewStateMac="true"
validateRequest=”true”

/>

<machineKey

validationKey="AutoGenerate,IsolateApps"

decryptionKey="AutoGenerate,IsolateApps"

decryption="Auto"

validation="3DES" - forces encryption of viewstate
/>
NOTE: Machine Key setting on a web farm will be set to allow the same validation and encryption keys across all servers in the farm.

5.2 .NET 2.0 specific setting

· <deployment retail=”true” /> - On Production Servers only
· <legacyUnhandledExceptionPolicy enabled="false" />
· <legacyImpersonationPolicy enabled="false"/>
· <alwaysFlowImpersonationPolicy enabled="true"/>
· <SymbolReadingPolicy enabled="1" />

<pages
enableViewState="true"
enableViewStateMac="true"
validateRequest=”true”

viewStateEncryptionMode=”Auto”

/>

<machineKey

validationKey="AutoGenerate,IsolateApps"

decryptionKey="AutoGenerate,IsolateApps"

decryption="Auto"

validation="AES"

httpOnlyCookies='true'
/>
5.3 Active Directory (AD) Configuration
The following configurations must be implemented in AD to support web applications in the Intranet and Extranet zones.
	Configuration
	Description

	Delegation
	Servers are configured in AD as “Trusted for Delegation”

	User Account
	Web application users are given an account in AD

and each user account is configured for delegation.

	Group
	For each web application, application groups must be set up for role-based security. Each group must map to a role used in the application.

6 Security Principles
This WAA prescribes security architecture for authentication, authorization, communication, and data within and across the tiers of CDHS web applications. This security architecture closely follows Microsoft’s guidance for building secure ASP.NET applications.
6.1 Principles for Web Application Security
Where applicable incorporate the overarching security principles listed below into CDHS web applications.
Least Privileged Accounts

ITSD will use ‘least privileged accounts’ to execute code and to access SQL databases.

Defense-In-Depth / Check at the Gate

ITSD requires that users are authorized on entry to each application tier (web pages, web services, sql database) as well as CAS checks before accessing any resources.

Assume all user input is malicious and Validate all User Input

ITSD requires all user input is validated as well as all validating parameters passed to all public web service methods

Reduce Surface Area

Do not expose information that is not required as such information can potentially open doors that lead to new vulnerabilities.

Fail to a Secure Mode

If a CDHS web application fails it must not leave sensitive data unprotected or expose any details in error messages presented to the user. Any Exceptions must be logged or emailed to the appropriate team member.

Sensitive Data

Any sensitive data stored in session, cookies, disk files etc., must be encrypted

Any sensitive data passed between tiers must be encrypted or must use SSL

7 Authentication

[CR 200]
7.1 Intranet Zone Authentication

click for details
Web applications in the Intranet must use windows integrated authentication. User credentials are authenticated against the Intranet’s Active Directory.

7.2 Extranet Zone Authentication

click for details

Web applications in the Extranet zone must use Basic authentication
· Basic authentication
· Users are authenticated against the Extranet’s Active Directory.
Note: The ITSD WebAdmin utility, discussed in detail on the next pages, can be used to administer the application’s users in the Active Directory.

7.3 Internet Zone Authentication

click for details
No Authentication is required in this zone. Contact the WSU if a web application requires authentication in the Internet zone.

· Forms Authentication may be used in the Internet Zone (.NET 2.0 only)

Users authenticated against SQL Server database

8 Authorization

[CR 200]
8.1 Role Based Security

CDHS web applications in the Intranet and Extranet zones must use .NET role-based security to authorize callers.

Web application users must be partitioned into application-defined, logical roles (groups). Members of a particular role share the same privileges within the application.
8.1.1 Authorization
Authorize access to assemblies or operations (method calls) based on the role-membership of the caller. Authorization must be done at both of the following gates
· URLAuthorization in web.config

· In the application code using PrincipalPermissions or IsInRole()

8.1.2 Active Directory Administration (WebAdmin utility)
ITSD provides a web based utility (WebAdmin) for user and group administration as well as a web service that can be called from your code to search the Active Directory.
Active directory organizational units for a web application will be created by the WSU for web applications that are hosted on CDHS shared or dedicated servers. The WSU will apply group permissions to those servers.

Account and group administration will be delegated to the Program that owns the CDHS web application or the CDHS IT Help Desk staff.
This utility may be used on the extranet and/or the intranet. Contact the ITSD Internet Unit to get setup to use this tool.

8.2 Intranet Zone Authorization

click for details
Web applications in the Intranet zone must use .NET role-based security to authorize access to application operations and resources.

8.3 Extranet Zone Authorization

click for details
Web applications in the Extranet zone must use .NET role-based security to authorize access to application operations and resources.
8.4 Internet Zone Authorization

click for details
CDHS Internet web applications may or may not require authorization. If a web application requires authorization in the Internet zone contact the WSU for authorization options.
9 Database Security Procedures

General

[CR 40]

· Use the MS Data Access Block for the Data Layer
· Use the Enterprise version for asp.net 2.0
· Data Access is limited to the Data Layer only

· Use Stored Procedures only – no direct sql in code

Connection Strings

[CR 41]

· using SqlConnectionStringBuilder() is not allowed

· All data access uses the same connection string

· Connection strings are stored in web.config

· asp.net 1.1

·
password is encrypted using ITSD supplied library

· asp.net 2.0

· store un-encrypted in the connectionStrings section

10 Application Security Procedures
10.1 User Input Validation

[CR 203]

click for details

· All user input must be validated on the web server for length and type.
· If a field is found to exceed its maximum length a security exception must be thrown

· Any user input that is written back to the page must be HTMLEncoded

· Any user input used in a querystring must be URLEncoded

· All Cookies and QueryString data must be validated

10.2 Exception Handling

[CR 204]

click for details

· All unhandled exceptions must be caught at the application level in the global.asax file.
· An application administrator must be notified of any exceptions (via email or any other method acceptable to ITSD)

· A default error page must be provided that displays only static messages, no exception information must be displayed.

10.3 Calling Web Services

[CR 201]

click for details

Web Services are called via a proxy.

· The proxy must be dynamic to allow ITSD to modify the URL on deployment

· To flow credentials to the web service the proxy’s Credentials property must be set to the systems default credentials of the current user
· The proxy’s Timeout must be set to some appropriate value.

· Set the timeout property considering timeouts (such as execution timeout, proxy timeout, deadlock intervals, and session timeout) and SQL query execution times.
· Preauthenticate – if using this then must also assign ConnectionGroupName to the current users name
10.4 Web Service Validation

[CR 302]

click for details

Public web service methods must validate all strings, structures and objects passed in as parameters.

· Validate strings for some maximum expected length

· Validate objects are of the expected types

· Validate structure members that are strings or objects

· Throw exceptions for any bad parameters found

10.5 Unmanaged Code Validation

[CR 302]

· Validate all parameters passed to unmanaged code

10.6 Path Validation

[CR 302]

click for details

· All disk paths entered by the user or passed to web service methods must be validated.

10.7 Client Side Components

[CR 10]
· No ActiveX, Flash or Java Applets may be used on or downloaded to the client

10.8 Isolated Storage

[CR 12]
· DO NOT use this to save data on client machines
If no other options exist and you request and are granted permission from ITSD to use Isolated Storage then the following rules will apply:

· Store only small amounts of non-sensitive data only

· Must cleanup the storage area of old files
· Must perform error handling on all calls

· IsolatedStoragePermission is required, set values as:

· UserQuota to small but required amount (10K-100K)

· Isolate by: User + Domain + Assembly

10.9 Protecting Viewstate

[CR 205/206]

click for details

· Set the ViewStateUserKey property to the current username or session ID

· ASP.NET 2.0 only - Sensitive pages must be protected by encryption
Set:
<@page viewStateEncryptionMode=”Always” enableViewStateMAC="true"
· ASP.NET 1.1 only – Pages are encrypted as per the validations setting in the machinekey section in machine.config (validation=3DES)
10.10 Code Access Security (CAS) and Trust Levels
[CR 202/301]
CDHS web applications must use .NET Code Access Security (CAS) to limit the access code has to protected resources and operations.

10.10.1 CDHS CAS Policies

CAS policies are used to control permissions granted to CDHS web application assemblies on shared servers based on the identity and origin evidence of each assembly.
1.1.1 CDHS “Medium Trust” Policy

By default all Web Pages and Web Services run in “Medium” trust and are restricted to calling only specified web services. For example:

<trust level=”Medium” originUrl=”http://Server1/AppFolder/Service1.asmx“ />
ASP.NET 2.0 : ProceessRequestInApplicationTrust

This attribute defaults to TRUE, Do Not set this to FALSE

1.1.2 Custom Configuration Files and Sandboxing Code

For code that requires more permission than is granted by medium trust you may ask ITSD to allow you to use either of the following methods:
1. Sandbox code

click for details

Sandbox code that that needs more than Medium permission to execute in a separate component (DLL) that can be granted the needed permissions and be secured by CAS security demands before accessing any resources.

The code must

· Be marked APTC
· Make a demand on the caller to protect the Assertion

· A custom permission

· Strong Name Identity

· Assert the permission needed.
· Perform the task

· Revert the Assertion

2. Custom configuration file
ITSD may create a custom configuration file for the web application that selectively grants application additional permissions not contained in the default Medium Trust policy.

Dangerous Security Permission’s

If any of the following permissions are granted to your application it will require extra care including validation, security demands and a more thorough application code review. In most cases code that requires any of these permissions must be isolated to a separate assembly where the code can be sandboxed. In general, UnmanagedCode permission is the only permission listed below that your application may be granted.

· UnmanagedCode. Allows managed code to call into unmanaged code, which is often dangerous.

· SkipVerification. Without verification, the code can do anything.

· ControlEvidence. Making up evidence allows security policy to be fooled.

· ControlPolicy. The ability to modify security policy can disable security.

· SerializationFormatter. The use of serialization can circumvent accessibility, as discussed previously.

· ControlPrincipal. The ability to set the current principal can trick role-based security.

· ControlThread. Manipulation of threads is dangerous because of the security state associated with threads.

· ReflectionPermission - MemberAccess. Defeats accessibility mechanisms (can use private members).

10.11 Forms Authentication .NET 2.0

[CR 209]

click for details

Forms Authentication will be supported in the Internet Zone only.

· Authenticate users against a Sql Server database.

· (NOT an .mdf database in the \data folder)
· The Logon page (if not the whole site) must run under SSL

· Create a GenericPrincipal for the user and assign to the current context

· Secure Forms setting are required in web.config
· Use SHA1 for HMAC generation and AES for encryption.
· Must encrypt forms cookie
· Do Not Persist Cookies
· Redirects to Secure Pages from unsecure pages must use full absolute Url’s
· Enforce Strong Passwords

10.11.1 Membership Provider

[CR 206]

· Must use SQL Database on a Sql Server (No MDF files in \data folder)

· Must use HASHED or Encrypted passwords

· Must use strong passwords

10.11.2 Role Manager

[CR 206]

The list below contains the secure settings required by ITSD when using the Role Manager
<roleManager

cookieProtection=”All”

cacheRolesInCookie=”true”

cookieTimeout=”10”

- 10 minutes or less

cookieRequireSSL=”true”

createPersistentCookie=”false”

cookieSlidingExpiration=”true”
10.12 Required Security Attributes

click for details
10.12.1 SecurityTransparent

[CR 304]
Note: Applies to Full Trust assemblies marked APTC
Transparent assemblies can be accessed from partially trusted code and cannot expose access to any protected resources or functionality. Code in the assembly is not allowed to suppress code access security checks, cannot ASSERT permissions and cannot cause an elevation of privilege. The same rules also apply to any 3rd party libraries or controls called by your code.

If your code meets the above description then mark the assembly with this attribute in your AssemblyInfo file.

 [assembly: SecurityTransparent]

10.12.2 SecurityCritical

[CR 304]
Note: Applies to Full Trust assemblies marked APTC
Security-critical operations are actions that affect code access security, such as elevation of privilege through suppression of code access security checks, calling unsafe managed code, and so forth. If Security Transparent is not declared then your assembly will default to SecurityCritical.
If your code requires it then
1. Add this attribute in your assemblyInfo file: [assembly: SecurityCritical]

2. Apply the attribute where needed at the method level
 This code will be reviewed for the following:
· Method parameters are validated and canonicalized where appropriate
· No inappropriate data is leaked back to low-trust code
10.12.3 SecurityTreatAsSafe

[CR 304]

Note: Applies to Full Trust assemblies marked APTC
Any Security-critical code marked with this attribute should not elevate permissions of the caller.
10.12.4 RequestMinimum

[CR 202]
If your code requires access to resources that are not granted in Medium Trust you must Request the minimum permissions your application needs in the AssemblyInfo file

11 Secure Code Requirements

[CR 205/206]
The following items are required and are included in the ITSD Code Review process

11.1 Cookies

· Cookieless Sessions.

· If you require cookieless sessions then set session mode to AutoDetect to limit the attack surface.

· Make cookies secure in web.config as
· <httpCookies requireSSL='true' httpOnlyCookies='true'/>

11.2 Mapping Paths

Use: MapPath(virtualPath, Request.ApplicationPath, false)

Always use the overloaded MapPath function and pass false as the 3nd parameter to prevent cross application mapping
11.3 Server.Transfer

Must Authorize the user in code before transferring to the page

Cannot be used to transfer to a page that requires secure access.

For example you may use this to transfer to a static error page, else use Response.Redirect

11.4 Passing Fixed Parameters to Pages

Use URL Mapping in web.config to hide fixed parameters passed to pages

<urlMappings enabled="true">

 <add url= "~/home.aspx"

 mappedUrl="~/default.aspx?parm1=1"/>

 <add url= "~/products.aspx"

 mappedUrl="~/default.aspx?parm1=2"/>

</urlMappings>
11.5 DataSource controls

Only the ObjectDataSource control is supported.

Bind to business classes only

No direct bind to sql server is allowed from the web server
11.6 Site Maps

Using a Site Map is not a secure way to authorize users
Each page must continue to authorize users at the page level and/or in the web.config authorization section.

11.7 Request Validation

Must allow asp.net to validate requests for script tags

Do NOT set <%@Page ValidateRequest=”FALSE”
Note it will default to true, so no entry in the page is required
NOTE: If you must turn this off for special needs (ie. html editors) then you must add your own code using regular expressions to validate that user input does not contain any script tags such as:

<%

<&
&#
<script

<!

javascript:

11.8 Session Timeout

For security purposes, set the session timeout to be 10 minutes or less.

11.9 WebConfigurationManager

Read only usage allowed on web.config (including configSource files)

This constructor cannot be called with a NULL value (causes the root web.config to be editted). You must have a null check on the virtual path used as:
If (!vDir == null)

config = WebConfigurationManager.OpenWebConfiguration(vDir);

11.10 ATLAS (or any Ajax implementation)

[CR 207]

Use the UpdatePanel control to avoid by passing the asp.net pipeline and security checks. Use of any other AJAX controls will require extra validation on the server as detailed below.

Note that all current security measures also apply to AJAX usage such as securing cookies and HTMLEncoding all output.

Authorization

· Users must be authorized on each call back
· The AuthenticationService object passes data in clear text and may be used on SSL connections only.

Data Binding

No direct binding to data sources including RSS feeds

Business Logic

Do not expose any business logic in javascript.

All logic is encapsulated in your business or page class.

Validation

· All input must be validated on the server including controls, cookies before use as:
PROBLEMATIC:
If (Page.IsValid)

string acctNumber = Request.Form["AcctNumber"]; // !!!! still a posible problem here

CHANGE TO:

If (Page.IsValid){

if (Request.Form["AcctNumber"] != null && myValidate(Request.Form["AcctNumber"])

string acctNumber = Request.Form["AcctNumber"];

}

WHERE: myValidate() checks maxlength of the data and uses RegularExpressions to validate correct input

· If NOT using the AJAX UpdatePanel control then you must validate the user by adding a custom token to the response to as:

BasePage Page_Load event
protected override void OnLoad(EventArgs e){

if (!User.Identity.IsAuthenticated)

throw new SecurityException("Unauthenticated User");

 // Requires Encrypted Viewstate

 RegisterRequiresViewStateEncryption();

 // get a unique session key to use for each page

 string key = Page.Request.Path;

 // get the hidden field control on the current page

 HiddenField ctl = (HiddenField) Page.FindControl("txtHidden");

 // avoid posts (attacks) with no viewstate

 if (!Page.IsPostBack && ctl != null) {

Guid token = Guid.NewGuid(); // create new token

 Session[key] = token; // save in session

 ctl.Value = token.ToString(); // store in hidden field

 }

 // Test token posted back is valid for this session

 if (Page.IsPostBack && ctl != null) {

string token = ctl.Value;

 if (String.Compare(token, Session[key].ToString()) != 0)

throw new SecurityException("Invalid token found");

 }

 base.OnLoad(e);

// call page load

}

Viewstate must be encrypted

Web.conifg entry required:

<system.web> <pages viewStateEncryptionMode="Always" /> </system.web>

Page_Load code required:

RegisterRequiresViewStateEncryption()
Calling Web Services

Web Services on an application server cannot be called directly from a web page. Call the service indirectly through a method in your web page.
DO NOT set the following line in your web.config file:

 <webServices enableBrowserAccess="true" />
Note: NO USE of GET for web service calls

Note that you may also call a method in your page class if desired.

User Notifications and Dependent Controls

The following is highly recommended when using asynchronous calls

To avoid confusion users must be visually notified that something is happening on the page. If there are controls on the page that require the completion of an Ajax call to operate correctly then disable these controls until the call completes.

(see the UpdateProgress control supplied by Microsoft)
11.11 WSE 3.0

[CR 600]

· Use Turnkey policies provided.

· No policy defined imperatively in code.
· UsernameOverTransport allowed only if using SSL

· Replay Detection must be implemented

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/WSS_Ch5_ImpMsgReplayDet_WSE30.asp
11.12 Web Parts

click for details
· Web Parts must comply with the Web Part Code Review [CR 700-710]
· Apart from the above special requirements Web Parts require the same secure coding techniques as any other .NET control that operates on a web page. e.g. Authorization, Input Validation, etc.
11.13 Secure Classes

[CR 208]

The following classes contain methods that either may not be used or whose usage is restricted in some fashion.
1.1.3 Security.Principal / Security.AccessControl

· These classes cannot be used to modify SID’s or ACL’s
1.1.4 System.Diagnostics – Process.Start()

· Cannot use the RunAs feature to start a process

1.1.5 DirectoryServices

· As ITSD provides a Web Service to access the AD on both the Extranet and Intranet, you will need special permission to use this class. In this case the following restrictions apply:
· Restricted to Read Only access.

· Must be restricted by Domain.

· No schema manipulation allowed

1.1.6 Reflection

· May only use: Assembly.ReflectionOnlyLoadFrom.

· Restricted to assemblies in your own Virtual Folders

1.1.7 ExecutionContext.SurpressFlow
· Cannot call this function to remove the Impersonation context of a thread

See: “alwaysFlowImpersonationPolicy “

1.1.8 ConnectionStringBuilder
· Cannot be used to create connection strings at run time.
12 ADA Compliance and Section 508

[CR 220]
All DHS hosted web sites must comply with Section 508 of the Rehabilitation Act of 1973, to make information technology accessible to people with disabilities. In addition, the State of California requires compliance with Priority 1 and 2 level checkpoints of the Web Content Accessibility Guidelines 1.0 (WCAG 1.0 “AA” Conformance Level). Finally, the State of California also requires the following: a) avoid using small images or test as links, b) do not use frames, c) if a downloadable document cannot be provided in an accessible electronic format, provide information on how to request an alternate format, d) provide contact information, and e) test for accessibility.

If you would like to read the actual legislative language, visit the Section 508 official home page at http://www.section508.gov/. For State of California standards, visit: http://www.eservices.ca.gov/.
12.1 ADA Compliance Check List

click for details

See the check list for complying with Section 508. As there are now some new technologies available, you may use any solution that will comply with Section 508.

13 Application Life Cycle Processes
This WAA section incorporates an application life cycle model to separate web application life cycle concerns into distinct and manageable processes.
Each life cycle process defines the requirements, guidance, and other concerns that must be addressed during that process. For example, the requirement to get ITSD approval for third-party components is defined in the WAA life cycle Design process.
The processes are:
(1) Define

(2) Design
(3) Develop
(4) Test
(5) Deploy

(6) Operate
(7) Change
Each process is defined below.
13.1 Define Process
CDHS expects industry "best practices" for requirements engineering will be applied to the web application definition process.
Application definition support from ITSD is available by request.
Use the ‘Remedy Help Desk’ link in the WAC to request web application definition support.
13.2 Design Process
13.2.1 CDHS Research Center

CDHS ITSD provides the CDHS Research Center to support web application architecture and design. Learn more at the WAC.
13.2.2 Requirements (before coding begins)
· Submit a design document that specifies:

· Performance objectives

· How the application will meet the performance objectives

· Performance Test Plan (including testing strategy)

· How the application will meet CDHS tracing requirements

 See the ‘Tracing Requirements’ document in WAC
· Submit a data model for sensitive data that specifies where this data is

· Stored

· Processed

· Displayed

· Submit the ‘Application Architecture Questionnaire’ to ITSD
Get the questionnaire at the WAC.

13.2.3 3rd-Party Libraries, Components, Off-The-Shelf Products

During the design process identify requirements for, and request approval of, third-party support libraries, components, and commercial off-the-shelf products. Use the ‘Web Application Questionnaire’ in the WAC to identify requirements and to request approvals.
Do not procure third-party items before getting approval from the WSU, SSU, ISO, and I2E. The WSU, SSU, ISO, and I2E help programs select, test and deploy third-party products.
CDHS has purchased and hosts some third-party products that may be used to add functionality to a web application. Some of these products are listed below. Use the ‘Remedy Help Desk’ link in the WAC to request an up-to-date inventory of available third-party products.

· Remedy

· Business Objects Reporting System, the supported and preferred system for adding reporting capability to CDHS web applications.
· WebTrends

· WatchFire (Accessibility and Quality)

· SAS
Third-party components are often used in development of projects for efficiency.

The ITSD requires that these components be identified in the design phase and be reviewed and approved prior to procurement. The following additional requirements apply:

1. The components must be consistent with these standards.

2. The source code must be purchased with the components.

3. Maintenance agreements must be purchased when possible.

4. Funding must be available to upgrade or replacement obsolete or unsupported components.

5. Products must be purchased from companies demonstrating long-term viability.
13.3 Development Process
13.3.1 Development Workstations and Servers

13.3.1.1 Developer Workstations

CDHS requires that certain tools and configuration settings be applied to developer workstations. Use the ‘Remedy Help Desk’ link in the WAC to request current requirements.

The application of IIS to a workstation must be cleared in accordance with Section 6-1030 of the CDHS Information Security Policy.
13.3.1.2 Shared Enterprise Development Systems

CDHS offers shared enterprise development workstations and servers for web application development. To learn more read the ‘CDHS Shared Enterprise Systems’ document in the WAC.
13.3.2 Team Development Environment
13.3.2.1 Isolated Web Development Model
CDHS has adopted Microsoft’s isolated web application development model. With this model, developers develop in complete isolation on their own development workstation using their workstation’s IIS (localhost). Any connections to a Sql Database may use a Test database supplied by the Sql Unit.

[image: image9.emf]WorkstationSQL Server

TEST DATABASE

Web PageWeb Service

Source Safe

Workstation

13.3.2.2
Single Solution Model

CDHS has adopted Microsoft’s single solution model for partitioning solutions and projects. A web application team creates a single Visual Studio.NET (VS.NET) solution as the container for all of an application’s projects.

[image: image10]
13.3.3 Source Control
Source files are stored and controlled in Microsoft Visual SourceSafe located on a CDHS network file share. VSS is administered by the WSU.
Project Initialization

click for details
The VSS project’s solution directory structure and folder naming conventions are established in a meeting between the application development team and ITSD.

The WSU creates the VSS root folder for the web application project and names the folder <ProjectName>Solution.root where <ProjectName> is the name of the web application project.
· The development team lead creates the VS.NET solution for the web project and all the solution’s sub-folders for DATA, UTILITIES etc.
· The lead sets the VS.NET IDE options for Source Control
The development team lead adds the VS.NET solution to VSS.
For larger projects where the scenario described above is not practical, contact the WSU for other options.
Development with VSS
Developers use the VS.NET IDE to work with the solution files stored in VSS.
Never use SourceSafe directly.

Assemblies

Add all non-.NET core assemblies used by the project to bin folders in the project and in SourceSafe so that builds will succeed on other users machines. Note that the WSU will build the application from the files in SourceSafe.
Code Check-In
At the least, check-in code at the end of day. After all team members have checked in the code, the team lead should label the project with the current assembly version to make it easier to roll-back to a previous version if necessary.

Only check-in code that compiles without errors. If a project will not compile, back it up on a network share BUT DO NOT check it in.

Code Check-Out
· At the start of day get the latest version of the solution (all projects).

· Check-out the solution file for short periods to add or remove projects.

· Developers check-out their own projects only as needed.
Visual SourceSafe Security
If developers need to secure code in VSS beyond the default security settings used by the WSU, do so on a folder-by-folder or project-by-project basis. In no case secure on a file-by-file basis
13.4 Code Standards
1.1.9 Base Classes

[CR 401]
Web Pages and Web Services

All web pages and web services must inherit from a base class you create.

This class will handle all common functionality such as validation, authorization etc. ITSD can supply a sample base class you can use to get started.

1.1.10 Default Web Page

[CR 210]

The website must have a default page named: default.aspx

1.1.11 ASP.NET 2.0 Compilation Model

[CR 402]
ITSD will continue to use the ASP.NET 1.1 model of compiling to a single DLL per web project. The site must also be pre-compiled and non-updateable
Required:
You must add a Web Deployment Project to your solution.

Optional:
You may also use the Web Application Project.
Web Deployment Project http://msdn.microsoft.com/asp.net/reference/infrastructure/wdp/
Web Application Projects (this is the preferred method)
http://msdn.microsoft.com/asp.net/reference/infrastructure/wap/default.aspx
Compile using the Web Deployment Project with options set as:
· Single DLL per web application

· Precompiled sites (Deployment Pre-Compliation model)
· Sites may not be updatable
e.g. no html or code in deployed aspx pages
NOTE: The WSU will build the application for deployment.

The application should be built first by developers and be free of any compilation errors before submitting for review and deployment.
See “Deployment and Change Control Process” for details

1.1.12 ASP.NET 2.0 Configuration Files
configuration section

[CR 41]
All Database connection strings will be placed in the web.config <configuration> section unencrypted.

Set the configSource attribute as: configSource=configuration.config

ITSD will modify and encrypt this file for deployment

appSettings section

Place application specific setting in this section

If these setting are not modified between environments then

do not use a configSource attribute at all and place all data directly in the appSetting section in the web.config file.

If these setting must be modified between environments then

use the configSource attribute as:

configSource= appSettings.config

ITSD will optionally encrypt and/or modify the data in this section as needed for production or test.
NOTE: Any encryption of configuration file sections by ITSD will be transparent to your application and will not require any code changes.

13.5 Deployment and Change Control Process
The purpose of the deployment process is to establish operational management policies for a CDHS web application and then deploy the web application to test and production servers.

.
Builds and Deployments

[image: image11.emf]WebApplicationDatabase

DHS Intranet: Production

WebApplicationDatabase

DHS Intranet: Test

WebApplicationDatabase

Visual Source Safe

`

Developer

DHS Code Version Control and Promotion

DHS Intranet: Development

Development Team Lead

Internet Unit

Build and Deploy from Developer Workstations to CDHS Development Servers

Application developers build and deploy to CDHS Development Servers as desired.
Build and Deploy from CDHS Development Servers to CDHS Test Servers

· Team lead performs a REALEASE build to insure no compile time errors
· To deploy to Test you must pass a Code and Database Review.
As development teams may not always have SourceSafe versions in sync with the actual version to be deployed, ITSD will allow submission of projects in a ZIP format rather than ITSD getting the latest version from SourceSafe.

Steps in the Deployment to Test Servers
· Submit the Project for review and deployment in a ZIP file

· Submit a Remedy Ticket to request a Code review

· Include the full project (all code, DLL’s, Css and any other files need to build and deploy)
· Submit a backup of your SQL Database for review

· ITSD
· Performs a code review and database review
· Deploys to the test server.
· SourceSafe’s the code versions currently deployed to both TEST and PRODUCTION. These will be available to developers on request.
· Always deploys a full project build only

Deploy from CDHS Test Servers to CDHS Production Servers

To move to the application to Production servers you must go through the Change Control process.

· Go to Application Change Control site to submit a Change Request

The WSU uses the release build from the test servers to deploy the application to the production servers. The WSU will contact you on or before the deployment date you entered in the Change Request document to verify that you have tested the code on the Test server and are ready to deploy on the specified date.
Deployment Paths

[image: image12.emf]Visual Source Safe

Developer

Development Server

Test Server

Production Server

Passed Code Review

Passed Database Review

Change

Control

Process

13.5.1 Code Review

Code reviews are performed:

· When a preliminary Code Review is requested

· When code needs to be moved to the TEST servers

You may request a preliminary Code Review at any time before your first deployment to a Test server. This is recommended to allow you to be aware of any issues early in the development cycle. Go to the Application Change Control site to request a “Code review Only”
The WSU uses the WSU ‘Code Review Checklist’ and Microsoft’s FxCop to review code for compliance with security and performance requirements. There are also data items on the checklist which are reviewed by the SSU. A typical ‘Code Review Checklist’ is available in the WAC. Results are published to, and discussed with, the application developers and the ITSD teams which will ultimately test, deploy, and operate the application.
FxCop:

[CR 1]

Only Security and Performance rules will be executed during a code review.

Security failures are critical and will cause the review to fail.

Performance failures may or may not be cause for failing the Code Review depending on the application and if it is hosted on shared server or not.
13.6 Test Process
CDHS provides a testing environment for each application being hosted.
If requested, ITSD may assistance and/or offer guidance with the following testing techniques.
NOTE: A Test Plan and Documented Test Cases are required.

ITSD may also provide guidance in developing these documents.
· Unit Testing - Test very small sections of the code to ensure that those small sections are doing what they are supposed to do.
· System\Integration\Performance Testing - Test the full system using automated and/or manual tests.
· Stress Testing - Push the limits of an application until it fails.
· Acceptance Testing - Formally verify that an application meets each of the requirements precisely.
· Life Critical Testing - For applications that control "life critical" processes where a failure can result in injury or death, test far more thoroughly and subject the application to other forms of rigorous ‘life critical’ software quality assurance.
13.6.1.1 Performance Testing Process
The ITSD will build the test environment in most instances.
The application developers will create a Performance Test Plan to include expected results and goals.
A baseline set of performance counters and other performance monitoring protocols for ASP.NET n-Tier distributed applications will be installed into the test environment.
As soon as possible begin an iterative performance testing process with ITSD. Submit candidate builds and participate in performance testing the builds.
Test results will be used to performance tune the application’s code and the hosting infrastructure.
13.6.1.2 Security Assurance in the Review Process

The Information Security Office in conjunction with the Internet Unit has embedded security policies, standards and requirements into the web application architecture and the Code Review check list.
This review process allows the developers to gauge how well the application conforms to DHS policies, standards and requirements. If the during the code review security related risks are discovers the Internet Unit, the Information Security Office and the development team will work together to:

· Understand the risk

· Formulate a plan to mitigate the risk

· Establish reasonable timeframes to mitigate the risk

The Information Security Office has an obligation to CDHS to effectively enforce CDHS policies, Standards and guidelines while considering the projects obligations and timeframes. It is for these reasons the Information Security Office does not grant waivers or exceptions but instead tracks each risk to acceptable mitigation using the above outlined process.
Implementation Details

Guidance for the n-Tier Architecture

13.6.2 Web and Application Servers

The ITSD server standards

	Windows Server
	IIS version
	.NET CLR version

	2000
	5.x
	1.1

	2003
	6.x
	1.1 and 2.0

13.6.3 Data Access Tier
For NET 1.1 The Microsoft’s Data Access Application Block (MDAB) is available from ITSD

For NET 2.0 The Microsoft’s Enterprise Library January 2006 Data Access Application Block (MDAB) is available from ITSD
Authentication

13.6.4 Intranet Zone Authentication

Enabling Authentication

	Server
	IIS Authentication
	 Web.Config

	Web Server
	Windows Integrated

Disable Anonymous
	<authentication mode="Windows"/>

<identity impersonate="true" />

	Application Server
	Windows Integrated

Disable Anonymous
	<authentication mode="Windows"/>

<identity impersonate="true" username=”xxx” password=”xxx” />

13.6.5 Extranet Zone Authentication

13.6.5.1 Enabling Windows Authentication
	Server
	IIS Authentication
	 Web.Config

	Web Server
	Basic

Disable Anonymous
	<authentication mode="Windows"/>

<identity impersonate="true" />

	Application Server
	Windows Integrated

Disable Anonymous
	<authentication mode="Windows"/>

<identity impersonate="true" username=”xxx” password=”xxx” />

13.6.6 Internet Zone Authentication
13.6.6.1 Enabling Anonymous Authentication

	Server
	IIS Authentication
	 Web.Config

	Web Server
	Anonymous (only)
	<authentication mode="None"/>

<identity impersonate="true" />

	Application Server
	Anonymous (only)
	<authentication mode="Windows"/>

<identity impersonate="false" />

13.6.6.2 Enabling Forms Authentication

	Server
	IIS Authentication
	 Web.Config

	Web Server
	Anonymous
	<authentication mode="Forms"/>

<identity impersonate="true" />

	Application Server
	Windows Integrated

	<authentication mode="Windows"/>

<identity impersonate="true" username=”xxx” password=”xxx” />

14 Authorization

14.1.1.1 Intranet Zone - Enabling Authorization and CAS
In web.config:
Use .NET URL authorization to authorize users by role

In code:

Use imperative or declarative role demands to authorize users

	Server
	Web.Config
	Authorization in Code

	Web Server
	<deny users=”?” />

<allow roles="Your Roles" />

<deny users=”*” />

<trust level=”Medium” />

	[PrincipalPermissionAttribute(SecurityAction.Demand, Role="Admin")]

If (User.IsInRole(Role)) run code…

	Application Server
	<deny users=”?” />

<allow roles="Your Roles" />

<deny users=”*” />

<trust level=”Medium” />

	[PrincipalPermissionAttribute(SecurityAction.Demand, Role="Admin")]

If (User.IsInRole(Role)) run code…

.
14.1.1.2 Extranet Zone - Enabling Authorization and CAS
In web.config:
Use .NET URL authorization to authorize users by role

In code:

Use imperative or declarative role demands to authorize users

	Server
	Web.Config
	Authorization in Code

	Web Server
	<deny users=”?” />

<allow roles="Your Roles" />

<deny users=”*” />

<trust level=”Medium” />

	[PrincipalPermissionAttribute(SecurityAction.Demand, Role="Admin")]

If (User.IsInRole(Role)) run code…

	Application Server
	<deny users=”?” />

<allow roles="Your Roles" />

<deny users=”*” />

<trust level=”Medium” />

	[PrincipalPermissionAttribute(SecurityAction.Demand, Role="Admin")]

If (User.IsInRole(Role)) run code…

14.1.1.3 Internet Zone -Enabling Authorization and CAS
In web.config:
Use .NET URL authorization to allow all users
In code:

No checks required
	Server
	Web.Config
	Authorization in Code

	Web Server
	<allow users=”*” />

<trust level=”Medium” />

	None Required

	Application Server
	<allow users=”*” />

<trust level=”Medium” />

	None Required

15 Application Security Procedures

15.1 User Input Validation

Web Pages must set the Maximum Length property of all text boxes and check for any overflow server side. Use code such as the following in a base class that all web pages will inherit from.

private void validateTextLength(System.Web.UI.ControlCollection ctls)

{

// Loop through all controls & check length of all text controls

foreach(Control ctl in ctls) {

string Id = ctl.ID

+ "";
// avoid null values

string typ = ctl.ToString()
+ "";
// avoid null values

if ((Id.Length > 0) && typ == "System.Web.UI.WebControls.TextBox") {

TextBox tb
= (TextBox)ctl;

if (tb.Text.Length > tb.MaxLength && tb.MaxLength > 0)

throw new SecurityException(tb.ID + " has exceeded size”);

}

// RECURSIVE Call

if (ctl.HasControls())

validateTextLength(ctl.Controls);

} // end foreach

} // end function

If all fields only allow alpha-numeric and some special characters then use a regulsar expression similar to :

if (!Regex.IsMatch(tb.Text,
 "^[0-9a-zA-Z'\\-\\s]{0," + tb.MaxLength.ToString() + "}$")
)

throw new SecurityException(….)
The above expression allows alpha-numeric, single quote and dash characters only and allows the length to be 0-maxLength (if all fields are required change 0 to 1)

15.2 Cookie and QueryString Validation

Use Regular Expressions to validate for alpha, numeric or alphanumeric data as well as expected maximum length.

NOTE always wrap expressions with ^ $ as below
if (!Regex.IsMatch(Request.Cookies.Get("Name"),@"^[a-zA-Z'.\s]{1,40}$"))

{

 // Name does not match expression

}
COMMON REGULAR EXPRESSIONS
	Field
	Expression
	Format Samples
	Description

	Name
	^[a-zA-Z\-'\s]{1,40}$
	John Doe
O'Dell
	Validates a name. Allows up to 40 uppercase and lowercase characters and a few special characters that are common to some names, such as single quote and dash You can modify this list.

	Social Security Number
	^\d{3}-\d{2}-\d{4}$
	111-11-1111
	Validates the format, type, and length of the supplied input field. The input must consist of 3 numeric characters followed by a dash, then 2 numeric characters followed by a dash, and then 4 numeric characters.

	Phone Number
	^[01]?[- .]?(\([2-9]\d{2}\)|[2-9]\d{2})[- .]?\d{3}[- .]?\d{4}$
	(425) 555-0123
425-555-0123
425 555 0123
1-425-555-0123
	Validates a U.S. phone number. It must consist of 3 numeric characters, optionally enclosed in parentheses, followed by a set of 3 numeric characters and then a set of 4 numeric characters.

	E-mail
	^([0-9a-zA-Z]([-.\w]*[0-9a-zA-Z])*@([0-9a-zA-Z][-\w]*[0-9a-zA-Z]\.)+[a-zA-Z]{2,9})$
	someone@example.com
	Validates an e-mail address.

	URL
	^(ht|f)tp(s?)\:\/\/[0-9a-zA-Z]([-.\w]*[0-9a-zA-Z])*(:(0-9)*)*(\/?)([a-zA-Z0-9\-\.\?\,\'\/\\\+&%\$#_]*)?$
	http://www.microsoft.com
	Validates a URL

	ZIP Code
	^(\d{5}-\d{4}|\d{5}|\d{9})$|^([a-zA-Z]\d[a-zA-Z] \d[a-zA-Z]\d)$
	12345
	Validates a U.S. ZIP Code. The code must consist of 5 or 9 numeric characters.

	Password
	(?!^[0-9]*$)(?!^[a-zA-Z]*$)^([a-zA-Z0-9]{8,10})$
	
	Validates a strong password. It must be between 8 and 10 characters, contain at least one digit and one alphabetic character, and must not contain special characters.

	Non- negative integer
	^\d+$
	0
986
	Validates that the field contains an integer greater than zero.

	Currency (non- negative)
	^\d+(\.\d\d)?$
	1.00
	Validates a positive currency amount. If there is a decimal point, it requires 2 numeric characters after the decimal point. For example, 3.00 is valid but 3.1 is not.

	Currency (positive or negative)
	^(-)?\d+(\.\d\d)?$
	1.20
	Validates for a positive or negative currency amount. If there is a decimal point, it requires 2 numeric characters after the decimal point.

Additional Resources for Regular Expressions
http://www.regular-expressions.info/tutorial.html.

15.3 Validation Controls

If using Validation controls then you must always perform a check server side as:

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

 If (IsPostBack) Then

' Handle AutoPostBack TextBox.

Validate("Group3") ' OR use Validate() if no groups.

If (Page.IsValid) Then

Label3.Text = "AutoPostBack TextBox validates."

Else

ERROR CODE HERE

End if
15.4 Exception Handling – Catch Un-Handled Exceptions
1. In the global.asax file add code to the Application_OnError() event
2. Add a default error page in web.config pointing to your static error page

In Global.asax.cs:
protected void Application_Error(Object sender, EventArgs e) {

// always get the BASE Exception

Exception ex = Server.GetLastError().GetBaseException() ;

If (ex != null) {

Server.ClearError();

// Gather all needed information to email

host

= ctx.Request.UserHostName.ToString();

svr

= ctx.Server.MachineName;

// etc. …

// GET ALL INNER EXCEPTIONS

StringBuilder sb = new StringBuilder();

getInnerExceptions(sb, ex);

string messages = sb.ToString();

// format all your info to email

string info = “Message: “ + messages + “ host: “ + host … etc.

string subject = “Exception on Server: “ + svr….. etc.

// NOTIFY and Admin of the error

SendEMail(mailTo,mailFrom,mailSubject, messages);

// Jump to the error page

Response.Redirect(“MyErrorPage.aspx”);

}

}

//recursively obtains all messages of exceptions and innerexceptions

private void getInnerExceptions(StringBuilder sb, Exception ex){

if (ex != null) {

sb.Append("\r\n" + ex.Message);

getInnerExceptions (sb, ex.InnerException);

}

}

In web.config:
<customErrors mode="RemoteOnly" defaultRedirect="MyErrorPage.aspx" />

NOTE: This error page must only show a static message such as:
“An error has occurred in this application. The Admin has been notified.”

15.5 Calling Web Services and Passing Credentials
In your Web Page Base class create a function to call the web service through

protected ServiceClassName getProxy()

{

ServiceClassName proxy = new ServiceClassName();

// Pass the current users credentials

proxy.Credentials = CredentialCache.DefaultCredentials;

proxy.Timeout = 60000; // set to the max time needed to complete operation

 // the smaller the better, time is in millisecs

proxy.PreAuthenticate = true;

// not secure

proxy.ConnectionGroupName = User.Identity.Name;
// now is secure

return proxy;

}

// Example of Calling a web service method through the getProxy function

DataSet ds = getProxy().GetUserData(userName);

In your Web Service class authorize callers to each method

public DataSet GetClientData(int clientId) {
If (!User.IsInRole(“dhsextra\admin”) throw new SecurityException();

}

[PrincipalPermissionAttribute(SecurityAction.Demand, Role="Admin")]

public DataSet GetClientData(int clientId) {

}

If all methods require the same role or roles then you may authorize users at the assembly level using PricipalPermissionAttribute or in a base class using IsInRole()
15.6 Web Service Parameter Validation

Validate string lengths and other object types in your method or in the Service Base class. Types that .NET can validate such as int, double, bool etc. require no checks in code.
Public String GetData(string name, int userId, object oData) {

if (!Regex.IsMatch(name, @"^[a-zA-Z'.\s]{1,40}$")) {

// Name does not match expression

}

NOTE: for structure types – validate all string and object members

NOTE: for Object types validate the object is the type expected

15.7 Path Validation

Canonicalize and validate all paths either entered by the user or passed as parameters to public web service methods. Check that the path is part of your web sites root folder using MapPath.

String userPath

= System.IO.Path.GetFullPath(userSuppliedPath);
String myVirtPath
= Server.MapPath(myVirtualRoot)
userPath = Path.GetDirectoryName(userPath); // e.g. d:\inetpub\wwwroot\myApp\MyFolder

myVirtPath = Path.GetDirectoryName(myVirtPath); // e.g. d:\inetpub\wwwroot\myApp\

if (userPath.StartsWith(myVirtPath) != true)

throw new SecurityException(….)

15.8 Protecting Viewstate

Protect Viewstate from one-click attacks by setting the ViewStateUserKey property in the page OnInit event (note: this should be done in a page’s base class)
override protected void OnInit(EventArgs e)

{

InitializeComponent();

base.OnInit(e);

// set to protect the viewstate from one-click attacks

Page.ViewStateUserKey = Session.SessionID;
 // or set to User.Identity.Name

ASP.NET 2.0

For pages that contain sensitive data, in the page directive set:

<@page viewStateEncryptionMode=”Always”

15.9 Sandbox Code

All code accessing any strong named classes which do not allow partial trusted callers must be sandboxed in a separate class and DLL.
Protect the code that calls Assert.

The Assert call means that any code that calls the sandboxed assembly has full access whatever permission the assembly is asserting. To prevent malicious code from executing code in the sandboxed assembly, you can issue a full demand for a custom permission prior to calling Assert and update the medium-trust policy file to grant your Web application the custom permission.

Example

// This strong name key is used to create a code group that gives permissions to this assembly.

[assembly: AssemblyKeyFile("snKey.snk")]
[assembly: AssemblyVersion("1.0.0.0")]

// The AllowPartiallyTrustedCallersAttribute requires the assembly to be signed with a strong name

// This attribute is necessary since the control is called by either an intranet or Internet

// Web page that should be running under restricted permissions. [assembly:AllowPartiallyTrustedCallers]

try {

 new MyCustomPermission().Demand();

new FileIOPermission(FileIOPermissionAccess.Write, filePath).Assert();

 … Do File IO Work Here …
} catch(Exception ex) {

Throw new ApplicationException(“Caller does not have custom permission”);
}finally{
CodeAccessPermission.RevertAssert();
}

15.10 Forms Authentication

15.10.1 Must use SSL (at least on the logon page, if not the whole site)
15.10.2 Redirects must use full absolute URL’s

// Form an absolute path using the server name and v-dir name

 string serverName =

 HttpUtility.UrlEncode(Request.ServerVariables["SERVER_NAME"]);

 string vdirName = Request.ApplicationPath;

 Response.Redirect("https://" + serverName + vdirName +

 "/Restricted/Login.aspx");

15.10.3 Setting in web.config as:

<forms

 protection="All"

 requireSSL=”true”

 enableCrossAppRedirects=”false”

 defaultUrl=”defauilt.aspx”

 cookieless=”UseCookies”

- Cookies are required NO URL-tickets
 path=”/MyAppPath”
- set a distinct path for the cookie

 name=”.DistinctAppName”
- set a distinct name (application name)
 domain=”dhs.com”
- set as per the correct domain

 timeout=”10”

- set timeout to low value (10 minutes)
 loginUrl=”logon.aspx”

<authentication mode=”Forms” />

<authorization> <deny users=”?” />

<identity impersonate=”true />

<httpCookies requireSSL='true' httpOnlyCookies='true'/>

15.10.4 Set encryption options in machine.config:
<machineKey

 validationKey="AutoGenerate,IsolateApps"

 decryptionKey="AutoGenerate,IsolateApps"

 decryption="Auto"

 validation="SHA1"
15.10.5 Enforce Strong Passwords

Please see the following link for in-depth coverage of this topic

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/paght000012.asp
15.10.6 Do not persist cookies
 Logon Control
- set DisplayRememberMe=false

 Forms

- call SetAuthCookie or pass false to ReDirectFromLoginPage
15.10.7 Optionally - Create a Generic Principal with Roles and assign to the current context. Only required if your application needs to distinguish between users. As no sensitive information is allowed on the internet this is an OPTIONAL requirement.
The principal object represents the security context under which code is running. Applications that implement role-based security grant rights based on the role associated with a principal object. To set the role associated with the user on every request, in this implementation the principal is replaced in the Application_OnAuthenticateRequest function of Global.asax as shown below:
1. protected void Application_OnAuthenticateRequest(Object src, EventArgs e)

2. {

3. HttpContext currentContext = HttpContext.Current;

4. if (HttpContext.Current.User != null)

5. {

6. if (HttpContext.Current.User.Identity.IsAuthenticated)

7. {

8. if(HttpContext.Current.User.Identity is FormsIdentity)

9. {

10. FormsIdentity id = HttpContext.Current.User.Identity as FormsIdentity;

11. FormsAuthenticationTicket ticket = id.Ticket;

12. string userData = ticket.UserData;

13. // Roles is a helper class which places the roles of the

14. // currently logged on user into a string array

15. // accessable via the value property.

16. Roles userRoles = new Roles(userData);

17. HttpContext.Current.User = new GenericPrincipal(id, userRoles.Value);

18. }

19. }

20. }

15.11 SecurityCritical / SecurityTransparent

The SecurityCriticalAttribute be applied to code for the code to perform security-critical operations. Security-critical code is accessible from partially trusted code and can expose access to protected resources or functionality. Code with the SecurityCriticalAttribute applied must be subject to a rigorous security audit to ensure that it can be used safely in a secure execution environment. Operations that are not security-critical are described as transparent.

By marking the assembly with the SecurityCriticalAttribute, you indicate that the assembly can contain critical code. However, unless explicitly marked as critical, all code within the assembly defaults to being transparent. If you want to perform security critical actions, you must explicitly mark the code that will perform the critical action with another SecurityCritical attribute, as shown in the following example.

[assembly: SecurityCritical]

Public class A {

[SecurityCritical]

Public void criticalFunction(){

// Critical code here

}

Public void nonCriticalFunction(){

// Non-Critical code here

}

}

15.11.1 SecurityTransparent
If your code does not elevate permissions (no assertions) mark the code transparent
[assembly: SecurityTransparent]

15.11.2 RequestMinimum Permissions

If your code requires access to resources that are not granted in Medium Trust you must Request the minimum permissions your application needs in the AssemblyInfo file

(Note: this applies even if you have been granted Full trust or granted permission to use a custom configuration file that allows more permission)

Example of requesting full access to the File System in AssemblyInfo file
C#:

[assembly:FileIOPermission(SecurityAction.RequestMinimum, Unrestricted = true)]

VB:

<assembly: FileIOPermission(SecurityAction.RequestMinimum, Unrestricted := True)>
16 Web Parts

· Catch all possible exceptions using try catch finally blocks
· Any custom or 3rd party DLL’s are deployed to the site’s bin folder only
· Render the control only as is appropriate for the permissions granted

· Validate all Properties in the SET accessor method. Validate for type, range and the Permissions needed this user

· Make property descriptions User Friendly in the Tool Pane

· HTMLEncode all user input rendered to the client (see SPEncode class)

· Custom Properties use simple types only (string, int)

· Make properties independent of each other IF they both appear in the Tool Pane

· Provide Title and Description properties that are comprehensive enough for users to find the web part using the web part search box

· Do not export sensitive property information (see ExportControlledProperties)
· Demand All Permissions needed for example: SharePointPermission w/ ObjectModel SharePointPermission.UnsafeSaveOnGet
· Dispose of any Sharepoint objects as required.

· See the site link below for important details on which objects REQUIRE disposal and which objects must NOT be disposed.

http://msdn2.microsoft.com/en-us/library/ms778813.aspx
17 ADA Compliance Check List

Web site content meets California Government Code 11135, adopting the

Section 508 standards, along with Priority 1 and 2 level checkpoints of the Web

Content Accessibility Guidelines 1.0 (WCAG 1.0 “AA” Conformance Level)

developed by the World Wide Web Consortium (W3C). The Web Services Unit

provides accessibility compliance reporting against these requirements at:

http://webxm.int.dhs.ca.gov . In addtion, the State of California has adopted five

additional requirements noted in the section below.

For help and examples on how to implement these guidelines see this website:

http://www.access-board.gov/sec508/guide/1194.22.htm
For more details on each requirement Ctrl-Click the numbered links
17.1 Section 508

 Section 508 requirements, paragraphs a-k are met by following the WCAG 1.0 “AA” confromance items noted below.

 Section 508, paragraphs l-p:

o (l) When pages utilize scripting languages to display content, or to create interface elements, the information provided by the script shall be identified with functional text that can be read by assistive technology.

o (m) When a web page requires that an applet, plug-in or other application be present on the client system to interpret page content, the page must provide a link to a plug-in or applet that complies with §1194.21(a) through (l).

o (n) When electronic forms are designed to be completed on-line, the form shall allow people using assistive technology to access the information, field elements, and functionality required for completion and submission of the form, including all directions and cues.

o (o) A method shall be provided that permits users to skip repetitive navigation links.

o (p) When a timed response is required, the user shall be alerted and given sufficient time to indicate more time is required.
17.2 WCAG 1.0

17.2.1 Priority 1 checkpoints

In General (Priority 1)

 1.1 Provide a text equivalent for every non-text element (e.g., via "alt", "longdesc", or in element content). This includes: images, graphical representations of text (including symbols), image map regions, animations (e.g., animated GIFs), applets and programmatic objects, ascii art, frames, scripts, images used as list bullets, spacers, graphical buttons, sounds (played with or without user interaction), stand-alone audio files, audio tracks of video, and video.
 2.1 Ensure that all information conveyed with color is also available without color, for example from context or markup.

 4.1 Clearly identify changes in the natural language of a document's text and any text equivalents (e.g., captions).

 6.1 Organize documents so they may be read without style sheets. For example, when an HTML document is rendered without associated style sheets, it must still be possible to read the document.

 6.2 Ensure that equivalents for dynamic content are updated when the dynamic content changes.

 7.1 Until user agents allow users to control flickering, avoid causing the screen to flicker.

 14.1 Use the clearest and simplest language appropriate for a site's content.

And if you use images and image maps (Priority 1)
 1.2 Provide redundant text links for each active region of a server-side image map.

 9.1 Provide client-side image maps instead of server-side image maps except where the regions cannot be defined with an available geometric shape.

And if you use tables (Priority 1)
 5.1 For data tables, identify row and column headers.
 5.2 For data tables that have two or more logical levels of row or column headers, use markup to associate data cells and header cells.

And if you use frames (Priority 1)
 12.1 Title each frame to facilitate frame identification and navigation.
And if you use applets and scripts (Priority 1)
 6.3 Ensure that pages are usable when scripts, applets, or other programmatic objects are turned off or not supported. If this is not possible, provide equivalent information on an alternative accessible page.
And if you use multimedia (Priority 1)
 1.3 Until user agents can automatically read aloud the text equivalent of a visual track, provide an auditory description of the important information of the visual track of a multimedia presentation.
 1.4 For any time-based multimedia presentation (e.g., a movie or animation), synchronize equivalent alternatives (e.g., captions or auditory descriptions of the visual track) with the presentation.

And if all else fails (Priority 1)
 11.4 If, after best efforts, you cannot create an accessible page, provide a link to an alternative page that uses W3C technologies, is accessible, has equivalent information (or functionality), and is updated as often as the inaccessible (original) page.
17.2.2 Priority 2 checkpoints

In General (Priority 2)

 2.2 Ensure that foreground and background color combinations provide sufficient contrast when viewed by someone having color deficits or when viewed on a black and white screen. [Priority 2 for images, Priority 3 for text].
 3.1 When an appropriate markup language exists, use markup rather than images to convey information.

 3.2 Create documents that validate to published formal grammars.

 3.3 Use style sheets to control layout and presentation.

 3.4 Use relative rather than absolute units in markup language attribute values and style sheet property values.

 3.5 Use header elements to convey document structure and use them according to specification.

 3.6 Mark up lists and list items properly.

 3.7 Mark up quotations. Do not use quotation markup for formatting effects such as indentation.

 6.5 Ensure that dynamic content is accessible or provide an alternative presentation or page.

 7.2 Until user agents allow users to control blinking, avoid causing content to blink (i.e., change presentation at a regular rate, such as turning on and off).

 7.4 Until user agents provide the ability to stop the refresh, do not create periodically auto-refreshing pages.

 7.5 Until user agents provide the ability to stop auto-redirect, do not use markup to redirect pages automatically. Instead, configure the server to perform redirects.

 10.1 Until user agents allow users to turn off spawned windows, do not cause pop-ups or other windows to appear and do not change the current window without informing the user.

 11.1 Use W3C technologies when they are available and appropriate for a task and use the latest versions when supported.

 11.2 Avoid deprecated features of W3C technologies.

 12.3 Divide large blocks of information into more manageable groups where natural and appropriate.

 13.1 Clearly identify the target of each link.

 13.2 Provide metadata to add semantic information to pages and sites.

 13.3 Provide information about the general layout of a site (e.g., a site map or table of contents).

 13.4 Use navigation mechanisms in a consistent manner.

And if you use tables (Priority 2)

 5.3 Do not use tables for layout unless the table makes sense when linearized. Otherwise, if the table does not make sense, provide an alternative equivalent (which may be a linearized version).
 5.4 If a table is used for layout, do not use any structural markup for the purpose of visual formatting.

And if you use frames (Priority 2)

 12.2 Describe the purpose of frames and how frames relate to each other if it is not obvious by frame titles alone.
And if you use forms (Priority 2)

 10.2 Until user agents support explicit associations between labels and form controls, for all form controls with implicitly associated labels, ensure that the label is properly positioned.
 12.4 Associate labels explicitly with their controls.

And if you use applets and scripts (Priority 2)

 6.4 For scripts and applets, ensure that event handlers are input device-independent.
 7.3 Until user agents allow users to freeze moving content, avoid movement in pages.

 8.1 Make programmatic elements such as scripts and applets directly accessible or compatible with assistive technologies [Priority 1 if functionality is important and not presented elsewhere, otherwise Priority 2.]

· 9.2 Ensure that any element that has its own interface can be operated in a device-independent manner.
· 9.3 For scripts, specify logical event handlers rather than device-dependent event handlers.
17.2.3 State of California Additional Requirements

· Avoid using small images or test as links.

· Do not use frames.

· If a downloadable document cannot be provided in an accessible electronic format, provide information on how to request an alternate format.

· Provide contact information.

· Test for accessibility.

18 Project Initialization

The lead sets the VS.NET IDE options for source control as:
· Select menu Tools -> Options -> Projects -> Web Settings

· Check – ‘File Share’

· Select menu Tools -> Options -> Source Control -> General

· Uncheck – ‘Check in everything when closing a solution.’
· Uncheck – ‘Keep items checked out when checking in.’
· Uncheck – ‘Allow checked in items to be edited.’

· Select – Use Visual SourceSafe settings in the combobox

NOTE: The WSU will build the application from the code in SourceSafe. Please be sure to include in SourceSafe all files needed to perform a build and deployment. This will include any 3rd party DLL’s, image files etc.
19 Links and Documents of Interest

Contact the Internet Unit

inetinfo@dhs.ca.gov
Application Change Control
Application Change Management

Submit a Request a Code Review

Submit a Change Request

View Status of Change requests and Code review

Get Change Request Documents
WSU Code and Utilities

\\dhssacint43\dotNET

Sample Code (base pages, error pages …)

Microsoft Enterprise Library

Other utilities

Web Architecture Center (WAC) on the CDHS Intranet
Web Architecture Center

Register for the WAA Orientation class

View Documents referenced by this document

Documents of Interest in the WAC

ITSD Code Review Check List .NET 1.1

ITSD Shared Enterprise Systems

CDHS Research Center

ITSD Policy Links for Developers

ITSD WSU Web Application Change Management

ITSD Coding Best Practices .NET 1.1

ITSD Architecture Security Exception Request Procedure

CDHS ITSD Application Architecture Questionnaire

WSE 3.0 Replay Detection Sample Code

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/WSS_Ch5_ImpMsgReplayDet_WSE30.asp
ASP.NET 2.0 - Web Deployment Project Add- In

http://msdn.microsoft.com/asp.net/reference/infrastructure/wdp/
ASP.NET 2.0 - Web Application Projects Add-In
http://msdn.microsoft.com/asp.net/reference/infrastructure/wap/default.aspx
ADA Compliance
http://www.access-board.gov/sec508/guide/1194.22.htm
http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990505/#text-equivalent
Building ADA compliant sites with ASP.NET 2.0

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnaspp/html/aspnetusstan.asp
How To: Secure Forms Authentication in ASP.NET 2.0
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/paght000012.asp
20 Revision History Log

	Revision History

	Revision
	Date
	Author
	Comments

	5.2.4
	12/13/07
	WSU RCalmann
	Modified the steps to deploy an application from Dev to Test to Production, to make the process clearer and correct some mistakes in previous versions

	5.2.3
	06/11/07
	WSU RCalmann
	Added new item for Web Parts – dispose of objects

	5.2.2
	05/30/07
	WSU RCalmann
	Updated items for AJAX usage

	5.2.1
	05/04/07
	WSU RCalmann
	Removed reference to “Sharepoint Portal Developer Policy” document as it is SP 2003, no longer supported

	5.2
	05/03/07
	WSU

RCalmann
	Updated the ADA section with the latest state requirements

	5.1
	03/08/07
	WSU RCalmann
	Revised the review and deployment to Test process to allow for large development teams to submit code in Zip format rather than WSU getting the latest version from SourceSafe, which may not match the actual version that needs to be deployed.

	5.0
	06/20/06
	WSU (RCalmann)
	Revised for asp.net 2.0 and to reorganize the structure and merge related data in to one section

Separate content from implementation details

	4.0
	10/29/05
	ITSD IMAS WSU
	Document revised to reflect infrastructure changes and incorporate an application life cycle model.

	3.0
	9/30/04
	ITSD
	Document revised to reflect infrastructure changes.

	2.2
	2/19/04
	ITSD
	Initial Version Released

PAGE
- 5 -

_1240649486.vsd
`

Client Tier

DHS Internet Security Zone

_1240651357.vsd
Company Name

￼

Double-click to type
notes. Subselect "Company
Name" to edit the title.

`

_1259045733.vsd
Server

Workstation

Visual Source Safe

Developer

Development Server

Test Server

Production Server

Passed Code Review
Passed Database Review

Change Control
Process

_1214917048.vsd
Workstation�

�

�

Server�

Drag the side handles to change the width of the text block.�

Client�

WEB SERVER�

APPLICATION SERVER�

SQL SERVER�

User A�

Fixed Account Process�

User A�

Fixed Account�

WEB PAGE
Impersonation=True
Authorization
User.IsInRole()�

WEB SERVICE
Impersonation=False
Authorization
User.IsInRole()�

_1216014028.vsd
�

Server�

Data�

Web Server�

ASP.NET Web Page�

Application Server�

ASP.NET Web Service�

Data Access Block�

SQL Server�

Database�

_1191655188.vsd
`

Domain

Client Tier

DHS Extranet Security Zone

_1214897426.vsd
Workstation�

�

�

Server�

Data�

Workstation�

SQL Server�

TEST DATABASE�

Web Page�

Web Service�

Source Safe�

Workstation�

_1190631733.vsd
`

