Epidemiology and Surveillance

Last Updated 2017

Basics of Infection Prevention
Healthcare-Associated Infections Program
Center for Health Care Quality
California Department of Public Health

Objectives

- Discuss basic principles of epidemiology and how they apply to healthcare-associated infection (HAI) surveillance
- Review recommended surveillance practices
- Describe surveillance outcome and process measures for infection prevention

Epidemiology

Definition: Study of disease factors affecting populations

Clinical care: focus on the individual

VS

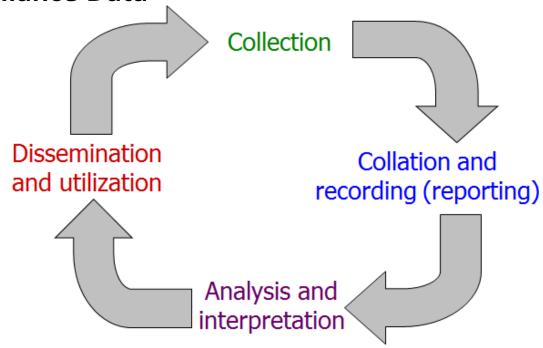
Epidemiology: focus on the group

- Healthcare epidemiology answers questions such as:
 - What factors contribute to increased HAI rates?
 - What populations are at higher risk for developing HAI?
 - How have HAI changed over time?
- Assessment of trends over time

Infection Prevention and Healthcare Epidemiology

- Goal is HAI prevention
- Discipline professional societies
 - Association for Professionals in Infection Control and Epidemiology (APIC)
 - Society for Healthcare Epidemiology of America (SHEA)
 - Infectious Diseases Society of America (IDSA)
- Epidemiologic research and surveillance underlie HAI prevention
 - Use data for action!

Epidemiologic Surveillance


- The ongoing, systematic collection, recording, analysis, interpretation, and dissemination of data
- Reflects rate of disease onset or current health/disease status of a community or population (e.g., healthcare patients)
- Aims to identify risk factors for disease
- Used for public health <u>action</u> to reduce morbidity and mortality, and to improve health

Surveillance

A surveillance system is an information loop that starts and ends with communication and action

Flow of Surveillance Data

Key Tenets of HAI Surveillance

- A written plan serves as the foundation
 - What HAI am I tracking? Why?
 - How will data be used?
 - Where are opportunities to prevent HAI in my facility?
- The <u>intensity</u> of surveillance efforts need to be maintained over time
- Stay <u>consistent</u> over time; always apply same surveillance definitions

Recommended Practices for Surveillance

- Assess the population
- 2. Select the outcome or process for surveillance
 - Comply with State and federal requirements
- 3. Use surveillance definitions
- Collect surveillance data
- 5. Calculate and analyze infection rates
- 6. Apply risk stratification methodology
- 7. Report and use surveillance information

AJIC *Am J Infect Control*, 26:277-88, 1998 AJIC *Am J Infect Control*, 35:427-40, 2007

Outcome Measure Examples

- CLABSI, CDI, and SSI Standardized Infection Ratio (SIR)
- MRSA and VRE BSI rate per 10,000 patient days

Process Measure Examples

- CAUTI prevention: percent urinary catheters with appropriate indication
- CLABSI prevention: percent adherence to CLIP bundle (all or none)
- CDI prevention: thoroughness of environmental cleaning
- HAI prevention: percent adherence to hand hygiene

Measuring Infections

Incidence

Number of persons in a population who develop a disease or condition within a specified period of time

Measure of <u>new</u> infections

Prevalence

Proportion of persons in a population who have a disease or condition at a given point in time

Measure of infections that <u>are</u> <u>present</u>

Incidence

Incidence measures the frequency of **disease onset** (i.e., rate). Answers: 'What is the risk of X occurring?'

Incidence = (# of new cases)during a specified time period (size of a specific population)

Example:

Prevalence

Prevalence measures disease status in a population at a particular time. Answers: 'How common is X?'

Prevalence = # of existing cases during a specified time period size of a specific population

Examples:

160 employees vaccinated = 0.8 x 100 = **80%** 200 employees total

<u>2 patients colonized with MRSA</u> = $0.2 \times 100 = 20\%$ 10 patients admitted on same day

Incidence Density Rate

Incidence density accounts for variation in the time each person is at risk for an event

```
Incidence density rate =

# of new cases during a specified time period

person-time at risk
```

Example:

hospital onset CDI# of patient days

HAI Surveillance Definitions

- Case definition (surveillance definition)
 - Clinical and laboratory characteristics that a patient must have to be counted as an event or case for surveillance purposes
 - Time, place, & person (e.g., age, sex)
 - Universal case reporting
 - A surveillance system in which all cases of a disease are to be reported

Laboratory-based surveillance

A surveillance method in which the reports of cases come from clinical laboratory data only (forgoing case review/symptomatology)

Applying Surveillance Definitions

- Always refer to written definitions to ensure accuracy of applying case definitions
 - Use standardized, published, validated definitions where available
- For accurate and valid comparisons, use the same definitions
 - If definitions change, the comparability of rates over time will be compromised

Clinical vs Surveillance Definitions

- Clinical
 - Patient centered
 - Used for therapeutic decisions
- Surveillance
 - Population based
 - Applied exactly the same way each time

Collect Surveillance Data

- Include IP, clinical staff, and others share the responsibility
- Limit collection to only what is needed
- Be involved in efforts when creating or revising the electronic health records to enable HAI data collection

Prospective Surveillance

- Initiated when patient is still under the care
- Advantages
 - Ability to capture information in real time
 - Can interview caregivers
 - Can gather findings not recorded in patient record
 - Easier to demonstrate temporality (e.g., before and after observations) and therefore make causal inferences

Retrospective Surveillance

- Closed record review after patient has been discharged
- Advantages:
 - Allows for comprehensive review of sequential events
 - Efficient
- Disadvantage:
 - Does not allow for prompt intervention
 - Important/relevant information my be missing
- Administrative (billing, coding) data alone <u>cannot accurately</u>
 <u>identify HAI</u>
 - May be useful for identifying possible HAI

Numerator Data

- Numerator = number of instances of the "event" being measured
- Examples:
 - HAI identified through active surveillance: CLABSI, CAUTI, SSI, VAP
 - HAIs identified by laboratory finding alone: CDI, MRSA BSI, VRE BSI
 - Care practices, processes, observations: CLIP, hand hygiene compliance
- Record point in time or time period

Denominator Data

- Denominator = number of patients or procedures being followed, the population size, or person-time at risk (patient or line days)
- Examples:
 - Procedures
 - Patient days
 - Patient visits

Calculate and Analyze Infection Rates

Calculate rates and ratios by denominator type

- Total population at risk, or time at risk
- Used to calculate raw rate or incidence density rate:

Examples:

```
5 SSI
300 cardiac procedures x 100 = 0.67

2 CLABSI x 1000 = 1.33
1500 line days

218 patient days with central line = 0.61
360 total patient days
```


Risk Factor Data

- Factors that increase a patient's risk for HAI include
 - Patient characteristics and co-morbidities
 - Facility characteristics
 - Unit / ward type
 - Community disease prevalence
 - Invasive device use and duration
 - Surgical procedure type, duration, approach, and other circumstances
- Data collection includes risk factor data necessary for risk adjustment

Apply Risk Adjustment Methodology

- CLABSI and CAUTI: Infection risk takes into account patient location
- SSI: Probability of infection calculated for each surgical patient; varies by surgery
- CDI & MDRO (LabID): Infection risk accounts for disease burden (community prevalence), testing method (for CDI), and facility characteristics

Standardized Infection Ratio (SIR)

- Summary measure used to track HAI
- Allows for tracking over time
- Compares the actual number of HAI reported to what would be predicted using 2015 baseline data
- Adjusted for risk factors significantly associated with HAI

Calculating Standardized Infection Ratio (SIR)

Standardized infection ratio

Example:

Hospital A has 4 MRSA BSI over 23,500 patient days. National data predicted 2.5 MRSA BSI.

$$SIR = 4 = 1.6$$
 2.5

NHSN: A Guide to the SIR

- How to interpret SIR
- How SIR is calculated
- Risk adjustment factors for specific HAI

THE NHSN STANDARDIZED INFECTION RATIO (SIR)

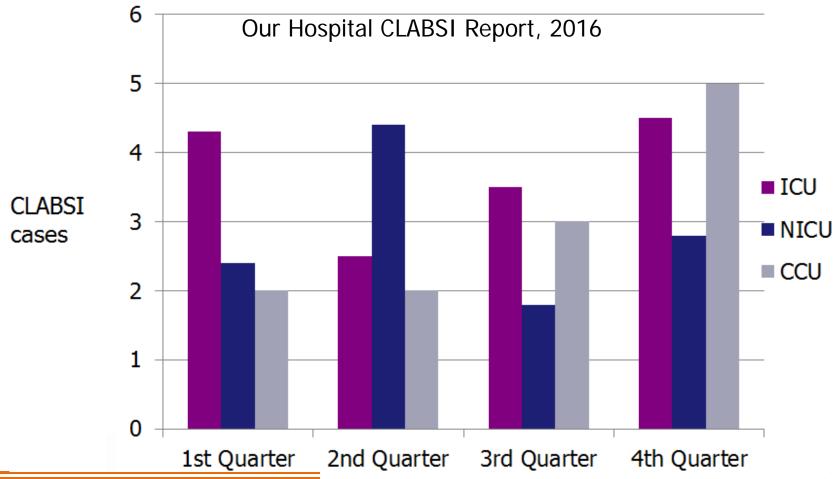
A Guide to the SIR

Updated July 2017. Please see Page 2.

NHSN: A Guide to the SIR

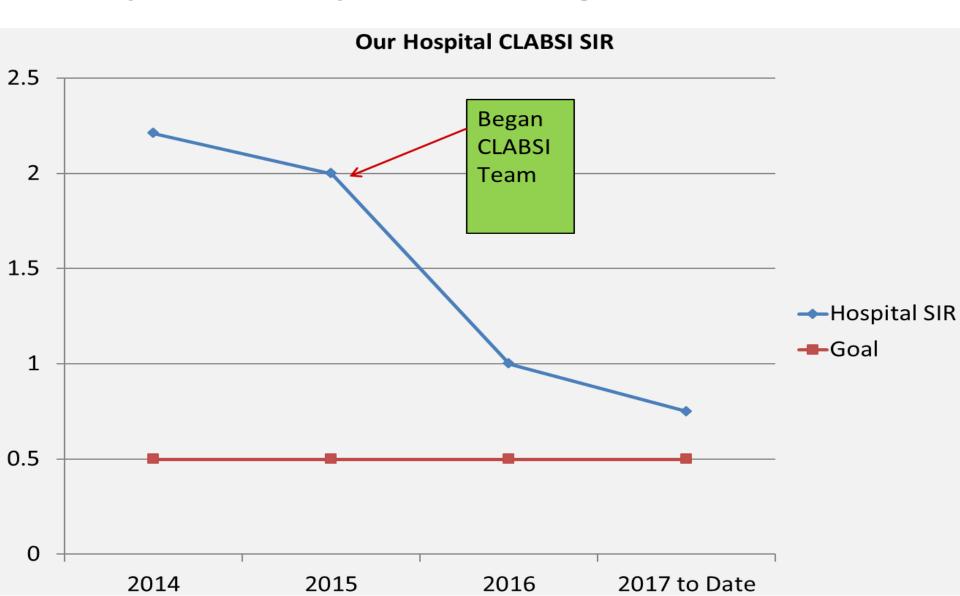
https://www.cdc.gov/nhsn/pdfs/ps-analysis-resources/nhsn-sir-guide.pdf

Report and Use Surveillance Data


"The demonstrable power of surveillance is in sharing findings with those who need to know and who can <u>act</u> on the findings to improve patient safety."

AJIC Am J Infect Control, 35:427-40, 2007

- Plan for distribution of findings
- Report to health care providers most able to impact patient care
- Report in a manner to stimulate process improvement
- Use visual displays of data (e.g., charts, graphs, tables)



Sample Bar Charts

Sample Line Graphs and Histograms - 3

Summary

- The IP must understand the basic principles of epidemiology and apply them to HAI surveillance
- Accurate and consistent data collection, recording, analysis, interpretation, and communication of findings is an essential part of the infection prevention and surveillance plan
- Surveillance of process measures helps focus prevention activities to improve outcomes

References

- Ebbing Lautenbach, K. F. Woeltje, and P.N. Malani., <u>Practical Healthcare</u> <u>Epidemiology</u>, 3rd Edition, 2010.
- Horan, T.C., Andrus, M., and Dudeck, M.A. CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infection Control 36: 309-332, 2008.
- Lee, T.B., Marx, J., Olmsted, R.N., and Scheckler, W.E., Recommended practices for surveillance: Association for Professionals in Infection Control and Epidemiology (APIC), Inc. Am J Infect Control 35:427-440, 2007.
- Yi, M., Edwards, M., Horan, T., Berrios-Torres, S., Fridkin, S., Improving riskadjusted measures of surgical site infection for the National Health Safety Network. Infect Control and Hospital Epidemiology. 32(10), 2011.

Questions?

For more information, please contact any HAI Program member.

Or email HAIProgram@cdph.ca.gov

