

Data Brief Supplement

Adolescent Birth Rate Decline in California

Regional Contributions (2010-2020)

Methods

Data Sources

The following data sources were used in the development of this data brief:

- ▶ 2010–12, California Birth Statistical Master File. California Department of Public Health, Center for Health Statistics and Informatics.
- ▶ 2018–20, California Comprehensive Master Birth File. California Department of Public Health, Center for Health Statistics and Informatics.
- ▶ 2010-20, Population data, State of California, Department of Finance. Demographic Research Unit. County Population Projections 2010–2060. Sacramento, California. January 2020. Updated July 14, 2021.

To obtain stable statewide demographic characteristics of births by demographic and geographic characteristics, three-year aggregated (2010–12 and 2018–20) data were used.

Definition of Adolescent Birth Rate (ABR)

The ABR is defined as the number of live births to adolescents aged 15–19 years divided by the total number of female adolescent population ages 15–19 years, then multiplied by 1,000.

Definition of Regions

Regions are groups of counties as defined by California's Maternal and Infant Health Assessment (MIHA). Three regions are standalone counties: Los Angeles, Orange, and San Diego. See map below.

Kitagawa Rate Decomposition

To estimate the regional contributions to the ABR decline, the Kitagawa rate decomposition method was used. This method identifies the relative contributions of changes to ABR's two factors: (1) distribution of birthing people ages 15–19 by time and geography; (2) each ABR-specific to time and geography (see equation below). The Kitagawa rate decomposition method compared the ABR between two periods, 2010–12 and 2018–20, by region. This method breaks down the total change in the birthing population over time, partitioning changes in the given region and region-specific ABR, to determine the contribution attributable to a region.

The difference in the overall rates $(R_1 - R_2)$ is attributable to these factors:

1. Distribution of factor (percent by category i, P_i)

 $\sum_{i} (P_{1i} - P_{2i}) \times ((R_{1i} + R_{2i}) \div 2)$

2. Factor-specific rates of an outcome (rates by category i, R)

 $\sum_{i} (R_{1i} - R_{2i}) \times ((P_{1i} + P_{2i}) \div 2)$

Where:

Factor 1, P = distribution of birthing population

Factor 2, R = ABR factor-specific rates

1i = time 1, 2010–12

2i = time 2, 2018-20

Limitation

The Kitagawa rate decomposition method evaluates a single covariate or risk factor assessment at a time and, thus, is not a multivariable approach.

Table 1. Adolescent Birth Rate by County within Regional Groups, 2010–12 and 2018–20

County Name	ABR, 2010–12	ABR, 2018–20	ABR change
	Central Coast Region	on	
Monterey	45.2	22.4	-50.4%
San Benito	21.7	11.3	-47.9%
San Luis Obispo	16.2	6.8	-58.0%
Santa Barbara	29.5	16.7	-43.4%
Santa Cruz	21.7	7.1	-67.3%
Ventura	26.9	11.3	-58.0%
	Greater Sacrament	to	
El Dorado	13.0	4.5	-65.4%
Placer	12.6	5.0	-60.3%
Sacramento	27.3	10.9	-60.1%
Sutter	29.3	14.9	-49.1%
Yolo	15.7	5.8	-63.1%
Yuba	43.1	18.8	-56.4%
	Los Angeles		
Los Angeles	27.9	10.6	-62.0%
	North/Mountain		
Alpine	*	*	*
Amador	19.4	11.6	-40.2%
Butte	23.2	10.2	-56.0%
Calaveras	19.1	10.6	-44.5%
Colusa	34.7	16.5	-52.4%
Del Norte	53.4	20.9	-60.9%
Glenn	39.5	15.6	-60.5%
Humboldt	22.8	10.4	-54.4%
Inyo	34.9	21.4	-38.7%
Lake	38.2	22.8	-40.3%
Lassen	36.3	23.1	-36.4%
Mariposa	23.7	18.8	-20.7%
Mendocino	37.3	17	-54.4%
Modoc	28.6	16.5	-42.3%
Mono	21.5	10.8	-49.8%
Nevada	14.7	6.1	-58.5%
Plumas	23.9	13.6	-43.1%

County Name	ABR, 2010-12	ABR, 2018–20	ABR change
	North/Mountain		
Shasta	29.8	14.5	-51.3%
Sierra	*	*	*
Siskiyou	35.9	15.4	-57.1%
Tehama	36.6	19.8	-45.9%
Trinity	38.5	19.2	-50.1%
Tuolumne	16.0	12.3	-23.1%
	Orange		
Orange	20.1	7.5	-62.7%
San Diego			
San Diego	26.0	9.1	-65.0%
	San Francisco Bay A	rea	
Alameda	18.6	6.3	-66.1%
Contra Costa	18.3	7.6	-58.5%
Marin	10.7	4.3	-59.8%
Napa	21.7	7.5	-65.4%
San Francisco	12.3	5.1	-58.5%
San Mateo	16.1	6.6	-59.0%
Santa Clara	19.0	5.7	-70.0%
Solano	24.0	11.2	-53.3%
Sonoma	19.1	7.8	-59.2%
	San Joaquin Valle	y	
Fresno	45.6	19.4	-57.5%
Kern	52.4	23.3	-55.5%
Kings	48.8	20.3	-58.4%
Madera	50.2	20.4	-59.4%
Merced	41.9	18.9	-54.9%
San Joaquin	33.9	15.9	-53.1%
Stanislaus	34.7	16.7	-51.9%
Tulare	55.6	23.0	-58.6%
	Southeastern CA		
Imperial	50.8	22.4	-55.9%
Riverside	29.1	13.0	-55.3%
San Bernardino	35.9	15.6	-56.5%

^{*} Data are suppressed due to small numbers (i.e., between 1 and 9).

References

- 1 Osterman, M, Hamilton, B, Martin, J, Driscoll, A. Births: Final Data for 2020 National Vital Statistics Reports Vol 70, Number 17. February, 2022. https://www.cdc.gov/nchs/data/nvsr/nvsr70/nvsr70-17.pdf
- 2 Power to Decide U.S. Teen Birth Rates Down 73% Since 1991 May, 2021 https://powertodecide.org/about-usnewsroom/usteen-birth-rates-down-73-1991
- 3 Cal Matters In California, the teen birth rate has hit a record low. How? https://calmatters.org/health/2019/10/behind-californias-record-low-teen-birth-rate/
- 4 Brindis CD, Decker MJ, Gutmann-Gonzalez A, Berglas NF. Perspectives on Adolescent Pregnancy Prevention Strategies in the United States: Looking Back, Looking Forward. Adolesc Health Med Ther. 2020 Oct 12;11:135-145
- 5 Kitagawa EM. Components of a difference between two rates. J Am Stat Assoc 1955;50(272):1168-94
- 6 Chabot MJ, Campa M, Damesyn M. Decomposing adolescent birth rates in the U.S.: Contributions of individual states and population subgroups to the nationwide decline. Paper presented at American Public Health Association Conference; November 1, 2015; Chicago, IL https://apha.confex.com/apha/143am/webprogram/Paper328542.html
- 7 Centers for Disease Control and Prevention. CDC Reports Winnable Battles Results, 2016. https://www.cdc.gov/media/re-leases/2016/p1205-winnable-battles.html
- 8 Centers for Disease Control and Prevention. Preventing pregnancies in younger teens. April 2014. https://www.cdc.gov/vitalsigns/pdf/2014-04-vitalsigns.pdf