California Tobacco Retail Surveillance Study 2018

Nina C. Schleicher, PhD, Trent Johnson, MPH, Monika Vishwakarma, MPH, Amna Ali, MPH, Lindsey Winn, MS, Lisa Henriksen, PhD
Stanford Prevention Research Center
Stanford University School of Medicine 3300 Hillview Ave, Mail Code 5537
Palo Alto, CA 94304

Submitted to the California Tobacco Control Program, California Department of Public Health June 30, 2019
Funding: Contract \#17-10041 (PI: Lisa Henriksen, PhD)
Disclosure: Any views or opinions in this study are solely those of the authors and do not necessarily reflect the policies or official views of the California Department of Public Health.

Table of Contents

EXECUTIVE SUMMARY 3
BACKGROUND 5
METHODS 5
ANALYSES 8
RESULTS 11
Section 1: Juul availability, advertising and price 12
Section 2: Availability, advertising and price of vaping products 15
Section 3: Availability and advertising for conventional tobacco 18
Section 4: Mobile coupons and other price discounts 22
CONCLUSION AND RECOMMENDATIONS 25
REFERENCES 27
TABLES 30
APPENDIX I: Inter-rater reliability analysis for select variables ($\mathrm{n}=100$) 37
APPENDIX II: CTRSS 2018 Marketing Surveillance Instrument. 38

Suggested citation:

Schleicher NC, Johnson TO, Ali A, Winn L, Vishwakarma M, Henriksen L. (2019) California Tobacco Retail Surveillance Study, 2018. https://www.cdph.ca.gov/Programs/ CCDPHP/DCDIC/CTCB/Pages/CaliforniaTobaccoControlBranch.aspx

EXECUTIVE SUMMARY

The 2018 California Tobacco Retail Surveillance Study (CTRSS) characterized the retail availability of tobacco in a large, representative sample of licensed tobacco retailers in the state. The study also assessed neighborhood differences in product availability and the presence of advertising and promotions, adjusting for store type. This report refers to the combination of electronic cigarettes (e-cigarettes), other electronic nicotine delivery systems, and e-liquids as vaping products. Cigar products included cigarillos/blunts, cigar/blunt wraps, little-filtered cigars, and large cigars. In this report, vape shops refer to stores that did not sell any conventional tobacco products, a definition that was derived from observations in the field. For the first time, the 2018 surveillance instrument included observations about Juul, the top-selling vaping product. It also differentiated between tobacco products with explicit flavors (mint/menthol, fruit, candy, or alcohol) and products with ambiguous flavor names, which we refer to as "concept" flavors.

This report includes the following key findings from a statewide random sample of 1199 tobacco retailers:

- Vape shops represented 3.8 percent of licensed tobacco retailers in 2018. The combination of vape shops, tobacco shops, and head shops suggests that at least 13.5 percent of licensed tobacco retailers are age-restricted stores.
- Although more than half of licensed tobacco retailers (61.5 percent) sold vaping products, only 24.4 percent sold Juul. No pharmacies sold Juul, even though the manufacturer claims it is smoking cessation product.
- At an average price of $\$ 6.31$ per pod, Juul provides at least as much nicotine as a pack of high-nicotine cigarettes for a lower price point.
- After a $\$ 2.00$ tax increase, the average price of the cheapest pack of cigarettes regardless of brand was $\$ 6.94(\mathrm{SD}=1.20)$, still less than the average price of the cheapest e-liquid (\$9.78, SD=5.91) and a blu disposable e-cigarette (\$11.17, SD=2.40).
- Price discounts for tobacco products were visible in 63.8 percent of stores, and such advertising was most prevalent in pharmacies.
- Cigarettes remain the most widely advertised tobacco product (71.1 percent of stores) and the most widely discounted tobacco product (65.6 percent of stores).
- Overall, 24.4 percent of stores advertised mobile coupons for tobacco products, and such advertising was more common at stores in neighborhoods with a higher proportion of school-age youth.
- Menthol cigarettes were sold in 98.3 percent of stores that sold cigarettes.
- Advertising for menthol cigarettes was significantly more common in neighborhoods with a higher proportion of school-age youth, young adults and African-American residents.
- Among stores that sold cigar products, explicit flavors were ubiquitous (in 95.6 percent of stores) and the vast majority (86.1 percent) of stores sold cigars marketed with concept flavor names.
- Advertising for cigars with explicit flavor names was more common in neighborhoods with a higher proportion of Hispanic residents and African-American residents.
List of Figures
Figure 1: Timeline of retail marketing observations in California since 2000 5
Figure 2: CTRSS 2018 sample, by county \& population density 11
Figure 3: CTRSS 2018 sample composition 12
Figure 4: Juul availability, by product type 12
Figure 5: Availability of vaping products by store type 13
Figure 6: Presence of at least one Juul advertisement 13
Figure 7: Price (before sales tax) of Juul and Newport menthol cigarettes, mean 14
Figure 8: Retail availability of vaping products, by product type 15
Figure 9: Availability of vaping products, by flavors 16
Figure 10: Availability of vaping products, by flavor category and store type 16
Figure 11: Presence of at least one vaping product advertisement, by store type 17
Figure 12: Price before sales tax of cheapest cigarette pack and three vaping products in 201818
Figure 13: Retail availability of conventional tobacco in 2018 19
Figure 14: Presence of ads for menthol cigarettes, by store type 19
Figure 15: Percent of stores that sold flavored cigars, by flavor category 20
Figure 16: Availability of flavored cigar products, by explicit/concept categories and store type21
Figure 17: Any flavored cigar advertising among stores that sold flavored cigars 21
Figure 18: At least one advertisement for mobile coupons, by store type 23
Figure 19: Presence of at least one advertised discount for any tobacco, by store type 24
Figure 20: Presence of at least one advertised discount, by product category 24
List of Tables
Table 1: Retail availability of vaping products, by product and store type 30
Table 2: Presence of Juul ads and discounts, by store type 30
Table 3: Multivariate models for Juul availability, vape product availability, vape product ads 31
Table 4: Multivariate models for price (before sales tax), by product 32
Table 5: Presence of vape product advertisements, by store type 33
Table 6: Price of vaping products relative to cheapest cigarette pack, regardless of brand 33
Table 7: Availability of menthol cigarettes, by store type 34
Table 8: Presence of advertisements by product, location and store type 34
Table 9: Multivariate model of presence of any advertising for menthol cigarettes, flavored cigars 35
Table 10: Multivariate models for presence of advertising for mobile coupons and any discount 36

BACKGROUND

The California Tobacco Retail Surveillance Study (CTRSS), formerly known as the California Tobacco Advertising Study (CTAS), represents the longest-running tobacco marketing surveillance system in any United States state. Retail observations were completed ten times starting in 2000 (Figure 1). The 2018 survey was conducted between April and September, approximately one year after the implementation of Proposition 56, which increased the state excise tax on cigarettes and other tobacco products. A main focus of the 2018 CTRSS data collection was to evaluate the $\$ 2$ tax increase on cigarettes, and those longitudinal results are summarized elsewhere. ${ }^{1}$ The focus of this cross-sectional report is to characterize neighborhood variation in retail availability and marketing of vape products and conventional tobacco products, as well as availability of mobile coupons and other price discounts. For the first time, this report differentiates between products with explicit flavors (mint/menthol, fruit, candy, or alcohol) and products with concept flavor names (sometimes referred to as "concept" flavors) because such descriptors make it more difficult for retailers and regulators to enforce restrictions on the sale of flavored tobacco. ${ }^{2}$ Juul, the top-selling vape product, with a 75 percent market share in the third quarter of 2018, was also a new focus of CTRSS 2018. ${ }^{3}$

Figure 1: Timeline of retail marketing observations in California since 2000

California Tobacco Retail Surveillance Study

California Tobacco Advertising Study

METHODS

Sample

Beginning in 2017, stores that sold any tobacco product (including vape products) were eligible for the CTRSS sample. The CTRSS 2018 sampling frame combined two sources: (1) the CTRSS 2017 sample ($\mathrm{n}=1277$) and (2) a replenished sample from the state tobacco retail licensing list obtained from the California Department of Tax and Fee Administration (CDTFA) in December 2017. We telephone verified whether all 1277 stores assessed in 2017 still sold tobacco in 2018, and continued phone verifications using randomly selected licensed tobacco retailers from the state licensing list until achieving our target sample size of 1275. Our telephone verification protocol asked whether stores sold cigarettes or cigars. If neither were sold, we asked about "vaping stuff or e-cigs", and then any tobacco products including pipe tobacco, chew or snus. Up to three attempts were made to telephone each store's primary and secondary phone numbers. Repeat calls were attempted at varying times of day to maximize completion. Telephone verifications were performed by Ewald \& Wasserman, LLC, (E\&W) the same contractor that collected retailer surveillance data.

Of the CTRSS 2017 stores ($n=1277$), telephone verifications confirmed 1142 were eligible for CTRSS 2018 and 22 were ineligible because they did not sell tobacco, either conventional or vaping products. This left 113 stores from CTRSS 2017 with incomplete telephone verifications
(e.g., permanently closed, answering machine, refusal), Stanford Research Prevention Center (SPRC) staff reclassified 61 of these stores as eligible from online searches. In order to achieve a target of 1275 eligible retailers for the final sample, E\&W telephone verified randomly selected stores from the state tobacco retail licensing list until 72 eligible stores were identified.

Data collection

Marketing surveillance was conducted by ten professional data collectors from E\&W using a survey programmed with Qualtrics. SPRC staff conducted a day-long training session that included classroom instruction, a detailed manual, sentinel products for category and brand identification, field practice and debriefing. After the first few days of data collection, SPRC staff conducted a teleconference with all data collectors to address questions and clarify instructions, as needed.

Data were collected between April and September, 2018. The average time to complete a store observation was 22.4 minutes (SD=33.6). Inter-rater reliability was assessed in 100 randomly selected stores which were visited by two different data collectors on separate occasions. The mean number of days between visits was 4.3 days ($S D=3.4, \min =0, \max =13$).

Measures

This section summarizes the major constructs included in this report and the Appendix contains a copy of the online survey instrument.

Store type. Data collectors classified stores into 1 of 10 categories: convenience stores (with or without gas), discount store (i.e., dollar stores and Walmart), head shop, liquor store, pharmacy, small market/deli/produce market ("small market"), supermarket/large grocery store, tobacco shop, vape shop, or other. For data collectors in the field, head shops were defined as primarily selling accessories for smoking marijuana, and many also sold tobacco or other items such as hats or clothing; vape shops were stores where 50 percent or more of visible merchandise was vaping products, including e-cigarettes, other vaping devices, and e-juice; tobacco shops were primarily engaged in the sales of tobacco products (including vaping products and e-liquid, but no more than 50 percent).

Product availability. For conventional tobacco products, data collectors noted the availability of: cigarettes, cigar products, loose tobacco/roll your own ("RYO"), and hookah. Within the cigar products category, data collectors recorded availability of cigarillos, large cigars, little filtered cigars, and blunt/cigar wraps. The availability of vaping products was recorded separately for e-cigarettes/cartridges, closed-tank systems (with pre-filled cartridges or pods), open-tank systems (designed for user to refill), and e-liquids. Different from 2017, data collectors did not differentiate "disposable" and "reusable" products, since their cost was similar. The categories for "e-hookah" and "e-cigars" were also removed and collapsed into the e-cigarettes/cartridges category since these are the same underlying technology and form factor. Data collectors noted the availability of Juul by product category (i.e., starter kit, device or pods).

Flavors. Product flavors were classified into one of four categories: mint/menthol flavors; fruit flavors (e.g., apple, grape, strawberry); candy flavors (e.g., bubblegum, honey, vanilla); and
alcohol flavors (e.g., margarita, piña colada, wine grape). For the first time, data collectors were asked to identify the presence of ambiguous ("concept") flavors, with product descriptors that do not reference an explicit taste (e.g., jazz, summer breeze, or colors). Product availability by flavor category (mint/menthol, fruit, candy, alcohol, concept) was noted for a subset of cigar products, little filtered cigars/cigarillos, and blunt cigar/wraps, vaping devices (including cartridges), and e-liquids that contain nicotine. Cigarettes were categorized as regular (non-menthol) or menthol.

Advertising. Advertisements were defined as professionally manufactured and branded materials with the intent to sell tobacco products. Data collectors noted presence of advertisements on store interiors and exteriors by tobacco product type for cigarettes, cigars, and vaping products. They noted the presence of advertisements by product category and flavor: cigarettes (regular and menthol); cigar products (any mint/menthol, fruit, sweet, alcohol or other explicit flavor), and any vaping products (any flavor). The presence of advertising for Juul was collected for the first time.

Price. Data collectors recorded four prices: (1) the cheapest pack of cigarettes regardless of brand, (2) a four-pack of Juul pods, (3) a blu e-cigarette (classic tobacco disposable single unit), and (4) the cheapest bottle of e-liquid (regardless of bottle size). If prices were not advertised, data collectors asked clerks when prices were not advertised. For each recorded price, data collectors indicated whether or not that price included sales tax. We also compare the price of a 4-pack of Juul pods to four packs of Newport cigarettes to examine relative price of these two products.

Mobile coupons. Data collectors recorded presence of advertising for mobile coupons for tobacco on the store exterior. They also recorded their presence inside stores. Data collectors noted location (interior/exterior) and product category (cigarettes, cigar products and vaping products).

Discounts. Discounts were defined as temporary price promotions that could be displayed on packaging, shelf strips, or advertisements. ${ }^{4,5}$ Inside stores, presence of discounts on packages and on unbranded shelf strips that were not large enough to meet the definition of advertisements was collected for cigarettes and vaping products. For interior and exterior, presence of a discount was noted by product category (cigarette, cigar, vape product), and for menthol cigarettes (menthol) and flavored cigars.

ANALYSES

This report highlights cross-sectional findings in 2018; other research examined change from 2017 to 2018 to evaluate the $\$ 2$ tax increase. ${ }^{1}$ The main objectives of this analysis was to characterize the retail environment for tobacco by product category, flavor and store type. Descriptive analyses characterized the relative price of Juul pods to the price of a top-selling brand of menthol cigarettes and the cheapest cigarette pack regardless of brand. Another goal of descriptive analyses was to characterize the availability of advertisements and price discounts by product category. Descriptive statistics were calculated for the subset of stores that sold the product of interest (e.g., Juul, vaping products, cigarettes, cigars) and results were split by store type and flavor category (when measured).

The following variables were derived from observational data:
Store type. After data collection, write-in cases for six (6) of the 46 "other" store types were reclassified to existing categories. In addition, if stores that were identified in the field as "vape shops" sold any conventional tobacco products (e.g., cigarillos), they were reclassified as tobacco shops. The remaining vape shops are stores that do not sell any conventional tobacco products, only vaping products, and are reported in tables and graphs as "vape (only) shops." Owing to low frequencies of some store categories, we combined tobacco and head shops, a distinction that data collectors reported as being difficult to make. We also combined discount stores with the "other" category. This yielded eight (8) categories for store type: convenience stores, liquor stores, pharmacies, small markets, supermarkets, tobacco/head shops, vape shops (i.e., "vape (only) shops"), and discount/other. Because regulation to eliminate the sales of tobacco in pharmacies would include all stores with a pharmacy counter, SPRC interns used a telephone verification protocol to confirm whether a pharmacy counter was present in supermarkets and Walmarts (completion rate=100 percent).

Presence of explicit flavors. For vaping products, e-liquids, little cigars and cigar products, product availability was reported by flavor category (mint/menthol, fruit, candy, alcohol, and concept) and store type. A variable for the presence of explicit flavors was created from combining mint/menthol, fruit, candy, and alcohol categories. In addition, the prices of a Juul 4-pod pack, a blu disposable e-cigarette, and the cheapest e-liquid were compared to the price of the cheapest pack of cigarettes, regardless of brand.

Prices. Following procedures our team developed previously, ${ }^{6}$ observed prices were converted to price before sales tax. Surveyed stores were geocoded by SPRC staff using ArcGIS version 10.6.1 (Figure 2). With information from geocoding stores to jurisdictions, we obtained the local sales tax rates from CDTFA 7 and subtracted the sales tax from the small subset of prices that were advertised with sales tax. A $\$ 0.25$ litter mitigation fee was included in prices from all San Francisco stores.

Multivariate models. We modeled product availability, advertising, and price as a function of store type, neighborhood demographics, and school proximity. To investigate how retail tobacco marketing differed by neighborhood demographics, the analyses followed procedures in previous work by SPRC and others. ${ }^{4,8,9}$ Specifically, store neighborhood was defined as a half-mile (roadway) store-centered buffer (i.e., the area you could drive in any direction for $1 / 2$
mile from each store). We linked these buffers to census tract estimates from the American Community Survey (2012-2016). If buffers intersected more than one tract, characteristics were weighted in proportion to tract area in the buffer. For each store neighborhood, we calculated: race/ethnicity (percent of population: Non-Hispanic Black; Non-Hispanic Asian/Pacific Islander; Hispanic; American Indian, Alaskan Native ("AIAN"), other, multiple); age (5 to 17 years - school age; 18 to 24 years - young adult); poverty (percent of population with household income less than 185 percent of the federal poverty level); and population density (residents per square mile). Using data for public school boundary shapefiles that we created, proximity to school was determined by calculating the straightline distance between each store and the nearest K-12 public school boundary, then categorizing whether stores were within 1000 feet of a public school (yes/no). ${ }^{10}$

Ordinary least squares regression models ("OLS") for numeric outcomes (price) and logistic regression models for dichotomous outcomes (product availability and advertising) were fit. All models controlled for store type, with the most prevalent category (convenience store) as the reference group. To accommodate potential non-linear relationships, quartiled versions of census-based variables (race/ethnicity, age, poverty, density) were entered with the lowest quartile serving as the referent category. We used quartiles to categorize store neighborhoods into four equal groups (number of cases) based on their ranking from lowest to highest on each of 8 neighborhood demographic variables (e.g., percent African-American residents, percent school-age youth, etc.). For example, the lowest quartile (Quartile 1) includes stores in the lowest 25% of neighborhoods for percent African-American residents, and the highest quartile (Quartile 4) includes the 25 percent of cases with the highest values for the variable.

The number of cases in each model varied. The logistic regression model for any tobacco discount included all cases, while logistic regression models for menthol cigarette, flavored cigar and vape product advertisements only included stores selling the respective product (flavor) type. The Odds Ratios (OR) from logistic regressions compare the odds that an outcome will occur for two groups by calculating the ratio of the two groups' odds. Odds ratios greater than 1.00 indicate greater odds of the outcome of interest when the predictor is present (coded 1=present vs. $0=$ not present), while odds ratios less than 1.00 indicate lower odds of the outcome of interest when the predictor is present. An odds ratio with a confidence interval that includes 1.00 indicates the odds of an outcome of interest occurring is not related to the condition of the predictor for the value coded as 1 vs . 0 . Adjusted odds ratio (AOR) has been adjusted for one or more other variables, typically "store type" and neighborhood demographics in this report.

For models of availability of Juul and presence of any mobile coupons, some store types were excluded due to low frequency (or no availability/presence) because including store types with low frequency or zero prevalence yielded poor model fit (i.e., irregularly large standard errors). For OLS models of price (Juul pods, blu e-cigarette, cheapest e-liquid), only the cases with valid price data were included. All analyses were performed using IBM SPSS Statistics V25 for Windows.

Statistical significance refers to differences or relationships that have been observed in sample data when the probability is very low that they are due to chance alone. In this report,
we deem differences or relationships to be statistically significant when the probability that they are due to random chance is less than .05 .

Inter-rater reliability. We computed Cohen's Kappa statistics for binary measures and Intraclass Correlation Coefficient (ICC) for numeric measures. Inter-rater reliability varied by product category: Kappa ranged from 0.25 for retail availability of Juul pods (due to low event rate) to 0.80 for concept flavors of e-liquids (Appendix I). Good reliability was obtained for price of cheapest pack of cigarette (ICC=0.88) and fruit flavored product availability (Kappa= 0.79 for cigars products; Kappa=0.68 for vaping products; kappa=0.80 for e-liquids). Inter-rater reliability for the price of Juul could not be computed because too few stores with repeat visits sold this product. This was true for select other products where the incidence was too low to estimate.

RESULTS

Retail marketing surveillance was completed in 1199 stores out of 1275 attempted. The observations could not be completed in a total of 76 stores because of merchant refusal ($n=60$), store closure ($n=11$), store did not sell tobacco $(n=4)$, or store required a membership to enter ($\mathrm{n}=1$). Excluding five ineligible stores, the completion rate was 94.4 percent. Figure 2 illustrates the location of the final sample relative to counties and their population density. Overall 27.8 percent of stores were within 1000 feet of a public school boundary. However, school proximity was not significant in any multivariate models and is not mentioned further.

Figure 2: CTRSS 2018 sample, by county \& population density

Convenience stores represented nearly half (46.5 percent) of all tobacco retailers in 2018 (Figure 3). Vape shops that did not sell any conventional tobacco were the smallest category (3.8 percent). Tobacco and head shops (9.7 percent) represented a larger proportion of the sample than small markets (7.6 percent) and traditional pharmacies represented 4.8 percent of the CTRSS sample, all but one of which was a Walgreens or Rite Aid. The proportion of stores with a pharmacy counter was 7.8 percent.

Figure 3: CTRSS 2018 sample composition ($\mathrm{n}=1199$)

Section 1: Juul availability, advertising and price

In spite of the large market share for Juul, only 1 in 4 stores (24.1 percent) sold Juul products in 2018 (Figure 4). Juul pods were the most commonly available (18.6 percent of stores) and starter kits were the least commonly available (9.4 percent of stores). No pharmacies or supermarkets sold any Juul products (Table 1).

Figure 4: Juul availability, by product type ($\mathrm{n}=1199$)

As shown in Figure 5, Juul was most commonly sold in tobacco/head shops (73.3 percent). Juul was nearly equally prevalent in convenience stores (29.8 percent) and vape shops (33.3 percent). Although 98.3 percent of pharmacies sold vaping products, no pharmacies sold Juul.

Figure 5: Availability of vaping products by store type (n=1199)

The majority of stores that sold Juul did not advertise the brand. As shown in Figure 6, only 39.4 percent contained any Juul advertisement and 20.1 percent contained Juul ads on the store exterior. Only 9.7 percent of stores that sold Juul advertised a discount for the products (Table 2).

Figure 6: Presence of at least one Juul advertisement ($n=289^{*}$)

*Subgroup of stores that sold Juul.

Availability of Juul products varied by neighborhood demography in multivariate models (Table 3). Stores in neighborhoods with a greater proportion of young adults were significantly more likely to sell Juul, except for neighborhoods with the highest proportion of young adults (Table 3). The opposite pattern was observed for school-age youth, with lower odds of selling Juul at stores located in neighborhoods with greater proportions of school-age youth. Controlling for store type, stores in neighborhoods with the highest proportion of African American residents were significantly less likely to sell Juul (AOR=0.52, 95\%CI 0.30, 0.89). A similar pattern was observed for poverty: Stores in neighborhoods with higher proportions of residents in poverty were significantly less likely to sell Juul. Juul was also a more "urban" product; that is, stores in neighborhoods with higher than median population density were more likely to sell Juul. (Table 3)

As shown in Figure 7, the average price of a 4-pack of Juul pods was $\$ 25.25$ ($\mathrm{SD}=3.11$). Assuming the price was constant across flavor varieties, the relative price of menthol pods was substantially cheaper than the price for a similar supply of top-selling menthol cigarettes. For example, the average unit price was $\$ 6.31$ per Juul pod versus $\$ 8.66$ per Newport pack (27.1 percent less per pod). The nicotine content of one Juul pod is equivalent to at least one pack of cigarettes with high nicotine content. ${ }^{11,12}$

Figure 7: Price (before sales tax) of Juul and Newport menthol cigarettes, mean(sd)

Note: The single-pack price of Newport was $\mathrm{M}=\$ 8.66, \mathrm{SD}=0.94$.

As shown in Table 4, the estimated price of any flavor Juul 4-pod pack in convenience stores was $\$ 26.72$, with a significantly higher price in liquor stores than in convenience stores. Juul cost significantly less at stores in some neighborhoods with a higher proportion of Hispanic residents (Table 4). There was no other significant variation in the price of Juul pods by neighborhood demographics.

Section 2: Availability, advertising and price of vaping products

This section characterizes retail availability and advertising of vaping products (including Juul) by product and flavor category. It also compares the relative price of a top-selling disposable e-cigarette (blu), the cheapest e-liquid, and the cheapest pack of cigarettes regardless of brand.

As shown in Figure 8, the majority of stores (61.5 percent) sold vaping products in 2018. Of these stores, 54.7 percent sold e-cigarettes and one fourth (25.6 percent) sold e-liquid that contain nicotine.

Figure 8: Retail availability of vaping products, by product type ($\mathrm{n}=1199$)

Among stores that sold any vaping products ($n=737$), nearly all of them (95.3 percent) sold explicit flavored products (mint/menthol, fruit, candy or alcohol) and approximately half (46.4 percent) sold concept flavors

Figure 9). Mint/menthol flavors were most commonly available (90.2 percent), followed by fruit flavors (82.2 percent).

Figure 9: Availability of vaping products, by flavors ($\mathrm{n}=737^{*}$)

*Subgroup of stores that sold vaping products.
As shown in Figure 10, almost all vape products sold by retailers contained explicit flavors (95.3 percent). Approximately half (46.4 percent) sold concept flavors, and these were most common in tobacco/head shops and vape shops.

Figure 10: Availability of vaping products, by flavor category and store type ($n=737^{*}$)

*Subgroup of stores that sold vaping products.

Half of stores that sold vaping products also advertised these products (Figure 11). Advertising for vaping products was most prevalent in convenience stores (66.2 percent), discount/other stores (61.5 percent) and tobacco/head shops (57.4 percent). Notably, only 14.1 percent of stores that sold vaping products advertised a discount for the products (Table 5).

Figure 11: Presence of at least one vaping product advertisement, by store type ($\mathrm{n}=737^{*}$)

*Subgroup of stores that sold vaping products.
Compared to convenience stores, advertising for vaping products was less common in most store types (AOR ranged from 0.02 to 0.29) except for tobacco/head shops and other/discount stores (Table 3). Adjusting for store type, the only neighborhood correlate associated with a higher likelihood of vape product advertising was the percent of Asian/Pacific Islander residents (see Table 3).

Vaping product prices. On average, the price of a disposable e-cigarette (blu) was $\$ 11.17$ and the price of the cheapest e-liquid (regardless of brand, size and nicotine content) was $\$ 9.78$ (Figure 12). In the multivariate models, pharmacies charged significantly higher prices than convenience stores for a blu e-cigarette (Table 4). This product cost significantly less at stores in neighborhoods with a higher proportion of Hispanic residents and cost significantly more in some neighborhoods with a higher proportion of African-American residents, but not in neighborhoods with the highest proportion of African-American residents (Table 4). A blu e-cigarette was also cheaper in neighborhoods with a higher population density but not in neighborhoods with the highest population density (Table 4). There was no other significant variation in the price of blu by neighborhood demographics.

Notably, pharmacies also charged significantly higher prices for the cheapest e-liquid than convenience stores (Table 4). The cheapest e-liquid cost significantly more at stores in some
neighborhoods with a higher proportion of young-adult residents (Table 4). There was no other significant variation in the price of the cheapest e-liquid by neighborhood demographics.

Figure 12: Price before sales tax of cheapest cigarette pack and three vaping products in 2018: Mean (standard deviation)

Table 6 compares relative price of three vaping products (blu single e-cigarette, cheapest bottle of e-liquid, and Juul pods 4-pack, respectively) to the cheapest cigarette pack regardless of brand. For example, we computed the price of Juul minus the price of the cheapest cigarette pack within each store. The average differences were $\$ 18.72$ (SD=3.19) for Juul, $\$ 4.53$ ($\mathrm{SD}=2.35$) for blu, and $\$ 3.36$ ($\mathrm{SD}=6.12$) for the cheapest bottle of e-liquid. Comparing prices for products within the same stores (Table 6), blu e-cigarette was consistently more expensive than the cheapest combustible cigarette. Relative to the cheapest pack of cigarettes, a Juul pod pack also cost more in every store that sold both products. However, e-liquids cost less than cigarettes in some stores, particularly liquor stores and small markets.

Section 3: Availability and advertising for conventional tobacco

This section summarizes the retail availability of conventional tobacco, by product category and flavor. As shown in Figure 13, nearly all stores sold cigarettes (93.0 percent). The next most common tobacco product was cigarillos (83.9 percent). Also common were blunt/cigar wraps and loose tobacco, found in nearly half of stores. Hookah was the least common tobacco product, found in 11.6 percent of stores.

Figure 13: Retail availability of conventional tobacco in 2018 ($\mathrm{n}=1199$)

Among the 1115 stores that sold cigarettes, nearly all (98.3 percent) sold menthol varieties (Table 7), including all pharmacies and tobacco/head shops. Menthol cigarettes were advertised in 67.2 percent of the stores that sold the product (Figure 14). Notably, menthol cigarette advertising was most prevalent in pharmacies (89.5 percent).

Figure 14: Presence of ads for menthol cigarettes, by store type (n=1096*)

*Subgroup of stores that sold menthol cigarettes.

Among stores that sold cigar products, explicit flavors were ubiquitous (95.9 percent of stores) (Figure 15). The most prevalent flavor category was fruit (90.9 percent), followed by candy (83.4 percent), alcohol (81.7 percent), and mint/menthol (47.9 percent). Concept flavored cigars were widely available (86.1 percent of stores that sold cigar products).

Figure 15: Percent of stores that sold flavored cigars, by flavor category ($\mathrm{n}=1031^{*}$)

*Subgroup of stores that sold cigar products (cigarillos/blunts, cigar/blunt wraps, little filtered cigars).

As shown in Figure 16, both explicit and concept flavored cigar products were commonly sold across all store types and in nearly all pharmacies that sold cigars.

Figure 16: Availability of flavored cigar products, by explicit/concept categories and store type ($\mathrm{n}=1031^{*}$)

*Subgroup of stores that sold cigar products: cigarillos/blunts, cigar/blunt wraps, and little filtered cigars.

As shown in Figure 17, advertising for flavored cigars was evident in 35.3 percent of stores and most common in tobacco/head shops (56.9 percent), liquor stores (37.2 percent), small markets (36.1 percent), and convenience stores (33.8 percent). Even though most pharmacies sold flavored cigars, only 16.4 percent advertised these products.

Figure 17: Any flavored cigar advertising among stores that sold flavored cigars ($\mathrm{n}=999^{*}$)

Neighborhood correlates of advertising for flavored tobacco differed by product category and store type (Table 9). Compared to convenience stores, pharmacies were significantly more likely to advertise menthol cigarettes ($\mathrm{AOR}=2.93,95 \% \mathrm{Cl}=1.20,7.14$). With the exception of supermarkets and tobacco/head shops, all other store types were significantly less likely than convenience stores to advertise menthol cigarettes (AOR ranged from 0.17 to 0.66).
Controlling for store type, advertising for menthol cigarettes was significantly more common in neighborhoods with higher proportions of school-age youth and with higher proportions of young adults, and in neighborhoods with the highest quartile of African-American residents (Table 9).

The presence of advertising for flavored cigars also varied by store type and neighborhood demographics (Table 9). Among stores that sold these products, flavored cigar advertising was more common in neighborhoods with higher proportions of Hispanic residents. The results suggest a possible dose-response relationship, with larger odds of advertising flavored cigars as the proportion of Hispanic residents increased. Stores were significantly more likely to advertise flavored cigars in neighborhoods with the highest quartile of African-American residents and in neighborhoods with the highest population density. However, stores in some neighborhoods with higher levels of poverty and stores in neighborhoods with the highest quartile of school-age residents were significantly less likely to advertise flavored cigars (Table $9)$.

Section 4: Mobile coupons and other price discounts

This section characterizes the presence of at least one advertisement for mobile coupons and for other price discounts on tobacco products. Multivariate models examined the presence of these forms of tobacco promotion as a function of store type and neighborhood demographics.

Mobile coupons. As shown in Figure 18, one in four stores (24.4 percent) advertised mobile coupons for tobacco products. Such advertising was more commonly found in convenience stores (39.0 percent) and tobacco/head shops (34.5 percent) than in other store types.

Figure 18: At least one advertisement for mobile coupons, by store type ($\mathrm{n}=1199$)

In a multivariate model, the presence of advertising for mobile coupons was related to store type as well as neighborhood demographics (Table 10). Controlling for store type, mobile coupons were more common at stores in neighborhoods with higher proportions of school-age youth. However, there was an inverse relationship between proportion of Hispanic residents and advertising for mobile coupons. Specifically, stores in neighborhoods with the highest proportion of Hispanic residents were less likely to advertise mobile coupons (Table 10).

Price discounts. In 2018, 63.8 percent of stores contained at least one advertised discount for tobacco products (Figure 19). Such advertising was most common in pharmacies (96.5 percent), and more commonly found in convenience stores (76.5 percent) and tobacco/head shops (66.4 percent) than in other store types.

Figure 19: Presence of at least one advertised discount for any tobacco, by store type ($\mathrm{n}=1199$)

As shown in Figure 20, advertised discounts on cigarettes were most common (65.6 percent of stores that sold that product) followed by advertised discounts for vaping products (35.4 percent). Few stores that sold cigar products advertised any discounts on those products (7.9 percent).

Figure 20: Presence of at least one advertised discount, by product category*

*Sample sizes vary based on the number of stores that sold each product.

In a multivariate model (Table 10), the presence of at least one advertised discount for any tobacco product was significantly more common in pharmacies compared to convenience stores (AOR=8.29, 95\% CI=1.98, 34.69) and significantly less common in all other store types (AORs ranged from 0.11 to 0.57). Controlling for store type, the presence of advertised discounts for any tobacco product was greater in neighborhoods with higher proportions of school-age youth. The presence of advertised discounts was greater in some neighborhoods with higher proportions of young adults, but not in neighborhoods with the highest proportion of young adults (Table 10).

CONCLUSION AND RECOMMENDATIONS

For the first time in 2018, marketing surveillance in California's tobacco retail environment assessed the availability, advertising, and price of Juul. For a product with such a substantial market share, Juul had comparatively little retail presence. The majority of licensed tobacco retailers sold vaping products (61.5 percent), but just 24.4 percent sold Juul. Although the company claims that its product is designed to help adult smokers quit, it does not sell Juul in pharmacies, where smokers seek to purchase cessation aids. ${ }^{13}$ Sold in 4-packs at an average price of $\$ 6.31$ per pod, Juul provides substantially more nicotine at a lower price point. On average, one Juul pod cost substantially less than the cheapest pack of cigarettes regardless of brand (Mean $=\$ 6.94, \mathrm{SD}=1.20$) and premium-brand cigarettes with youth appeal, such as Newport menthol (Mean $=\$ 8.66$, $\mathrm{SD}=0.94$). Additional research is needed to understand how California's tobacco tax increase is being passed through to vape product users, generally, and to Juul users, specifically.

After a $\$ 2.00$ tax increase, the average price of the cheapest pack of cigarettes regardless of brand (\$6.94) was still substantially less than the average price of a movie ticket (\$9.11), ${ }^{14}$ but was more costly than 2018 prices for a pound of ground beef (\$4.08), coffee beans (\$4.29), potato chips (\$4.95), and a half-gallon of ice cream (\$4.84). ${ }^{15}$ Even as the prevalence of cigarette smoking has declined, ${ }^{16}$ cigarettes remain the most commonly discounted tobacco product (in 65.6 percent of stores where they were sold). Such advertising was more common at stores in neighborhoods with higher proportions of school-age youth and young adults, which raises concerns about policy remedies to protect price-sensitive consumers. Examples of non-tax mechanisms that are recommended strategies to bolster the effect of tax increases are to establish minimum prices, ${ }^{17,18}$ as in New York City, and to eliminate coupon redemption and discounts, as in Providence, Rhode Island; New York City; and more recently in Oakland, California. ${ }^{19,20}$ In 2018, discounts on cigar products were rarely observed, possibly because the price for these products is already so low. ${ }^{8,9}$ In addition, we note that pre-printed packaging that offers "more for less" (e.g., 5 cigarillos for the price of 3) or " 2 for 99 cents" did not meet our definition of a temporary discount. ${ }^{21}$

The CTRSS 2018 instrument was also the first to assess the presence of mobile coupons both inside and outside stores. Approximately 1 in 4 stores advertised mobile coupons for tobacco products. Notably, mobile coupons were more common at stores in neighborhoods with a higher proportion of school-age youth. For advertised discounts, the results suggest a possible dose-response relationship, with larger odds of advertising at least one discount as the proportion of school-age youth increased. Tobacco industry practices that target consumers
based on proximity to stores, with promotions that are location-specific and/or time-sensitive are under-studied. ${ }^{22,23}$ Retail surveillance is limited in its ability to study other forms of coupon redemption at the point of sale. To better understand price discounts, analyses of scanner data from Nielsen or other sources should complement CTRSS. ${ }^{24}$

Results from CTRSS 2018 paint a dismal picture of pharmacy chains that refuse to abandon the sale of tobacco. Pharmacies were the store type most likely to advertise menthol cigarettes and the store type most likely to advertise at least one discount on tobacco products. Pharmacies were also a key source of cheap, flavored tobacco. Nearly all pharmacies sold both explicit- and concept-flavored cigars. Compared to convenience stores, pharmacies charged higher prices for a blu e-cigarette and the cheapest e-liquid, which was probably driven by the larger bottle size at pharmacies. In our previous research, pharmacies sold cigarettes cheaper than other stores, but charged more for bottled water. ${ }^{25}$ Surprisingly, the policy solution to ban tobacco sales in pharmacies that originated in San Francisco in 2008 has not been widely adopted in California. Fewer than 21 communities or counties have enacted similar local ordinances over the past decade. ${ }^{26,27}$ Results from this surveillance suggest that a statewide ban on tobacco sales in pharmacies would affect 7.8 percent of licensed tobacco retailers (approximately 2400 stores in 2018) and would eliminate a significant retail source of cheap combustible tobacco.

Neighborhood differences in the prevalence of advertising for flavored tobacco remain a persistent cause for concern about health equity. For example, advertising for menthol cigarettes was significantly more common in neighborhoods with a higher proportion of school-age youth and young adults. Stores were more likely to advertise menthol cigarettes and flavored cigars in neighborhoods with the highest proportion of African-American residents. In addition, the likelihood that stores advertised flavored cigars appeared to increase with the proportion of Hispanic residents nearby. A comprehensive sales restriction on flavored tobacco that includes menthol would remedy these inequities as long as stores stopped advertising products that are not legal for sale. ${ }^{2}$ Research is needed to document how exemptions for adult-only/tobacco-only retailers, as specified in some flavored tobacco ordinances in California, affect the availability and accessibility of flavored tobacco to priority populations.

REFERENCES

1. Henriksen L, Schleicher NC, Johnson TO, Andersen-Rodgers E, Xueying Z, Williams R. Mind the gap: Changes in cigarette prices after California's tax increase. Under review at Tob Regul Sci.
2. Voelker DH, Schleicher NC, Johnson T, et al. Flavors Campaign Evaluation: Retail Surveillance Final Report. California Department of Public Health, California Tobacco Control Program; 2019.
3. Behind the Explosive Growth of JUUL. Truth Initiative; 2018. https://truthinitiative.org/sites/default/files/media/files/2019/03/Behind-the-explosive-growth-of-JUUL.pdf.
4. Epperson AE, Johnson TO, Schleicher NC, Henriksen L. The price of Natural American Spirit relative to other cigarette brands. Nicotine Tob Res. February 2019.
doi:10.1093/ntr/ntz018
5. Ribisl KM, D'Angelo H, Feld AL, et al. Disparities in tobacco marketing and product availability at the point of sale: Results of a national study. Prev Med. 2017;105:381-388. doi:10.1016/j.ypmed.2017.04.010
6. Schleicher NC, Johnson TO, D'Angelo H, Luke DA, Ribisl KM, Henriksen L. Concordance of Advertised Cigarette Prices with Purchase Receipts in the United States. Tob Regul Sci. 2018;4:3-7(7). doi:https://doi-org.stanford.idm.oclc.org/10.18001/TRS.4.3.1
7. California Department of Tax and Fee Administration. California City and County Sales and Use Tax Rates. April 2018. https://www.cdtfa.ca.gov/taxes-and-fees/ArchiveRates-04-01-18-06-30-18.pdf.
8. Henriksen L, Andersen-Rodgers E, Zhang X, et al. Neighborhood Variation in the Price of Cheap Tobacco Products in California: Results From Healthy Stores for a Healthy Community. Nicotine Tob Res. 2017;19(11):1330-1337. doi:10.1093/ntr/ntx089
9. Henriksen L, Schleicher NC, Ababseh K, Johnson TO, Fortmann SP. Marijuana as a "concept" flavour for cigar products: Availability and price near California schools. Tob Control. 2018;27(5):585-588. doi:10.1136/tobaccocontrol-2017-053961
10. Map Collaborator- California School Campus Database (CSCD). http://www.mapcollaborator.org/mapcollab_cscd/?base=map\&y=37.33655\&x=123.48476\&z=6\&layers=notes\%2Cpolygons\%2Cuploads\%2Cschoolboundaries\&opacs=1 00\%2C25\%2C90\%2C100. Accessed August 9, 2016.
11. Omaiye EE, McWhirter KJ, Luo W, Pankow JF, Talbot P. High-NicotineElectronic Cigarette Products: Toxicity of JUUL Fluids and Aerosols Correlates Strongly with Nicotine and Some Flavor Chemical Concentrations. Chem Res Toxicol. 2019;32(6):1058-1069. doi:10.1021/acs.chemrestox.8b00381
12. Henriksen L. Retail availability and marketing of JUUL and other vaping products. Orally presented at the: California Tobacco Control Program Project Director's Meeting; November 29, 2018; Long Beach, CA.
13. Smoking Cessation and e-cigarettesâ \square "US - March 2015: Retail Channels. http://academic.mintel.com.stanford.idm.oclc.org/display/732963/. Accessed July 16, 2019.
14. Average movie ticket price in the USA. Statista.
http://www.statista.com/statistics/187091/average-ticket-price-at-north-american-movie-theaters-since-2001/. Accessed July 15, 2019.
15. Average Retail Food and Energy Prices, U.S. City Average and West Region: MidAtlantic Information Office : U.S. Bureau of Labor Statistics.
https://www.bls.gov/regions/mid-
atlantic/data/averageretailfoodandenergyprices_usandwest_table.htm. Accessed June 26, 2019.
16. Vuong TD, Zhang X, Roeseler. California Tobacco Facts and Figures 2019. Sacramento, CA: California Department of Public Health; 2019.
https://www.cdph.ca.gov/Programs/CCDPHP/DCDIC/CTCB/CDPH\ Document\ Libr ary/ResearchandEvaluation/FactsandFigures/CATobaccoFactsandFigures2019.pdf.
17. Tobacco Control Legal Consortium. Cigarette Minimum Price Law. Public Health Law Center https://publichealthlawcenter.org/sites/default/files/resources/tclc-guide-cigminimumpricelaws-2011.pdf.
18. Centers for Disease Control and Prevention. State Cigarette Excise Taxesâ \square "United States, 2009. MMWR. 2010;59(13):385-411.
19. Tobacco use in California 2018. Truth Initiative. https://truthinitiative.org/research-resources/smoking-region/tobacco-use-california-2018. Published June 1, 2018.
20. Tobacco Control Legal Consortium. Death on a Discount: Regulating Tobacco Product Pricing. Public Health Law Center; 2015. https://www.publichealthlawcenter.org/sites/default/files/resources/tclc-fs-death-on-discount-2015.pdf.
21. Henriksen L, Vishwakarma M, Fortmann SP. Appeal of value packaging and flavors in retail advertisements for cigar products near schools. In progress.
22. Seidenberg AB, Jo CL. Cigarette couponing goes mobile. Tob Control. 2017;26(2):233234. doi:10.1136/tobaccocontrol-2016-052996
23. O'Brien EK, Navarro MA, Hoffman L. Mobile website characteristics of leading tobacco product brands: Cigarettes, smokeless tobacco, e-cigarettes, hookah and cigars. Tob Control. August 2018. doi:10.1136/tobaccocontrol-2018-054549
24. Wang TW, Falvey K, Gammon DG, et al. Sales Trends in Price-Discounted Cigarettes, Large Cigars, Little Cigars, and Cigarillos-United States, 2011-2016. Nicotine Tob Res. 2018;20(11):1401-1406. doi:10.1093/ntr/ntx249
25. Henriksen L, Schleicher NC, Barker DC, Liu Y, Chaloupka FJ. Prices for Tobacco and Nontobacco Products in Pharmacies Versus Other Stores: Results From Retail Marketing Surveillance in California and in the United States. Am J Public Health. 2016;106(10):1858-1864. doi:10.2105/AJPH.2016.303306
26. Change Lab Solutions. Pharmacies that sell tobacco send a mixed message. https://www.changelabsolutions.org/sites/default/files/PharmaciesTobacco_Infographic_FINAL_20180416.pdf. Published 2018.
27. American Nonsmokers' Rights Foundation. Municipalities with Tobacco-Free Pharmacy Laws. Berkeley, CA: American Nonsmokers' Rights Foundation; 2019. http://no-smoke.org/wp-content/uploads/pdf/pharmacies.pdf.

TABLES

Table 1: Retail availability of vaping products, by product and store type ($n=1199$)

	Number of stores	E-cigs/ Cartridges	Closed tank systems	Open tank systems	E-liquid	Any device		Any type of Juul product
Store type Store Type	n	\%	\%	\%	\%	\%	\%	\%
Convenience Convenience	557	62.8\%	43.8\%	7.2\%	11.9\%	65.2\%	66.4\%	29.8\%
Liquor store Liquor store	167	47.9\%	18.0\%	10.2\%	16.2\%	50.3\%	52.1\%	12.0\%
Pharmacy pharmacy	57	98.2\%	78.9\%	78.9\%	91.2\%	98.3\%	98.3\%	0.0\%
Small market small market	91	23.1\%	1.1\%	0.0\%	2.2\%	23.1\%	23.1\%	1.1\%
Supermarket spermarket	104	35.6\%	2.9\%	3.8\%	6.7\%	35.6\%	35.6\%	0.0\%
Tobacco/head shops	116	77.6\%	78.4\%	87.9\%	90.5\%	93.1\%	93.1\%	73.3\%
Vape (only) shops	45	20.0\%	46.7\%	100.0\%	100.0\%	100.0\%	100.0\%	33.3\%
Discount/other discountoter	62	21.0\%	9.7\%	6.5\%	4.8\%	21.0\%	21.0\%	3.2\%
Total total	1199	54.7\%	36.8\%	21.4\%	25.6\%	60.6\%	61.5\%	24.1\%

Table 2: Presence of Juul ads and discounts, by store type ($\mathrm{n}=289^{*}$)

	Number of stores			Juul ads (among subgroup of retailers that sold Juul, n=289)			Juul ad with discount (did not ask about Juul- specific mobile or on pack/shelf strip price promos)		
Store type store type	n	Interior	Exterior	Any ad	Interior	Exterior	Any ad		
Convenience convenience	168	40.4%	26.5%	48.8%	10.8%	11.4%	14.5%		
Liquor store liquor store	20	15.0%	0.0%	15.0%	0.0%	0.0%	0.0%		
Pharmacy pharmacy	0	$\mathrm{~N} / \mathrm{A}$	N / A						
Small marketsmall market	1	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%		
Supermarket supremarket	0	$\mathrm{~N} / \mathrm{A}$	N / A						
Tobacco/head shops	85	24.7%	12.9%	30.6%	1.2%	1.2%	2.4%		
Vape (only) shops	15	20.0%	13.3%	20.0%	6.5%	6.7%	6.7%		
Discount/other discountother	2	60.0%	50.0%	50.0%	0.0%	50.0%	50.0%		
Total total	289	32.9%	20.1%	39.4%	6.9%	7.6%	9.7%		

*Subgroup of stores that sold Juul.

Table 3: Multivariate models for Juul availability, vape product availability, vape product ads

	Sold Juul, n=885		Sold Any Vaping products, n=1097		Any vape product ads, among stores selling vaping products, $\mathrm{n}=737$	
	AOR	95\% CI	AOR	95\% CI	AOR	95\% CI
Constant constant	0.41	95	2.13	95	1.39	95
Store type store type						
Convenience store convenience	Ref. ref					
Liquor store	0.25	(0.15, 0.43)	0.51	(0.35, 0.75)	0.24	(0.14, 0.40)
Pharmacy	N/A	N/A	N/A	N/A	0.06	(0.03, 0.14)
Small market	N/A	N/A	0.18	(0.11, 0.32)	0.11	(0.03, 0.33)
Supermarket	N/A	N/A	0.24	(0.15, 0.37)	0.02	(0.00, 0.08)
Tobacco/head shops	5.96	(3.69, 9.64)	6.20	(2.91, 13.19)	0.69	(0.43, 1.11)
Vape only shops	0.92	(0.47, 1.83)	N/A	N/A	0.29	(0.15, 0.57)
Discount/other	N/A	N/A	0.11	(0.06, 0.22)	0.69	(0.21, 2.27)
Race/ethnicity, \% Quartile 1 is referent category						
\% African American						
Quartile 2	0.72	(0.44, 1.16)	1.44	(0.96, 2.17)	1.31	(0.79, 2.15)
Quartile 3	0.79	(0.48, 1.30)	1.39	(0.92, 2.11)	1.04	(0.62, 1.74)
Quartile 4	0.52	(0.30, 0.89)	0.93	(0.61, 1.44)	1.09	(0.63, 1.89)
\% Asian/Pacific Islander						
Quartile 2	1.30	(0.78, 2.17)	0.99	(0.66, 1.50)	1.27	(0.77, 2.11)
Quartile 3	1.04	(0.60, 1.81)	0.73	(0.46, 1.14)	1.81	(1.04, 3.14)
Quartile 4	1.18	(0.68, 2.05)	0.89	(0.56, 1.42)	1.59	(0.91, 2.78)
\% Other/AIAN/Multiple races						
Quartile 2	1.07	(0.62, 1.86)	1.52	(0.98, 2.35)	1.08	(0.60, 1.93)
Quartile 3	1.26	(0.69, 2.27)	1.10	(0.68, 1.79)	0.86	(0.46, 1.62)
Quartile 4	1.31	(0.70, 2.45)	0.98	(0.59, 1.63)	0.81	(0.42, 1.59)
\% Hispanic						
Quartile 2	1.55	(0.96, 2.49)	0.73	(0.47, 1.12)	1.12	(0.69, 1.83)
Quartile 3	1.67	(0.92, 3.03)	0.43	(0.25, 0.73)	1.30	(0.70, 2.40)
Quartile 4	1.65	(0.74, 3.67)	0.26	(0.13, 0.51)	1.19	(0.51, 2.79)
Age, Quartile 1 is referent category						
\% School age, 5-17 years						
Quartile 2	0.62	(0.39, 0.97)	1.05	(0.69, 1.60)	1.22	(0.77, 1.93)
Quartile 3	0.56	(0.34, 0.90)	1.02	(0.66, 1.57)	1.11	(0.67, 1.85)
Quartile 4	0.38	(0.21, 0.67)	1.30	(0.80, 2.12)	0.70	(0.39, 1.25)
\% Young adult, 18-24 years						
Quartile 2	1.91	(1.19, 3.07)	1.48	(0.97, 2.25)	1.24	(0.77, 2.00)
Quartile 3	1.80	(1.05, 3.10)	1.55	(0.97, 2.48)	1.60	(0.92, 2.79)
Quartile 4	1.68	(0.96, 2.96)	1.37	(0.85, 2.23)	1.60	(0.89, 2.88)
Population density						
Quartile 2	1.46	(0.90, 2.39)	1.30	(0.87, 1.95)	0.78	(0.48, 1.27)
Quartile 3	1.94	(1.18, 3.18)	1.56	(1.03, 2.37)	0.97	(0.59, 1.61)
Quartile 4	2.31	(1.37, 3.90)	1.33	(0.86, 2.05)	0.83	(0.48, 1.43)
Poverty, <185\% FPL						
Quartile 2	0.49	(0.30, 0.80)	1.03	(0.66, 1.60)	1.13	(0.68, 1.86)
Quartile 3	0.37	(0.21, 0.64)	0.82	(0.51, 1.32)	0.71	(0.40, 1.24)
Quartile 4	0.34	(0.18, 0.64)	0.68	(0.40, 1.17)	1.07	(0.55, 2.09)
Near school, within $1,000 \mathrm{ft}$. of K-12 public school boundary	0.90	(0.62, 1.32)	0.88	(0.65, 1.20)	1.06	(0.71, 1.57)
Cell entries are adjusted odds ratio and 95% confidence intervals. Flavored cigars include concept flavors and explicit flavors. For some outcomes, select store types removed because of low frequency yielding non-convergence or poor model fit (irregular SEs etc.). FPL=Federal poverty level. AIAN=American Indian Alaskan Native.						

Table 4: Multivariate models for price (before sales tax), by product

	Cheapest cigarette$n=988$		Juul 4-pod pack $\mathrm{n}=204$		blu e-cigarette $\mathrm{n}=286$		Cheapest e-liquid$n=269$	
	Coef. (\$)	95\% CI	Coef. (\$)	95\% CI	Coef. (\$)	95\% CI	Coef. (\$)	95\% CI
Constant	7.55	(7.22, 7.89)	26.72	(24.42, 29.03)	11.85	(10.68, 13.03)	7.55	(3.92, 11.18)
Store type								
Convenience store	Ref.							
Liquor store	0.01	(-0.22, 0.23)	2.02	(0.19, 3.85)	0.66	(-0.18, 1.50)	-1.42	(-4.10, 1.25)
Pharmacy	-0.03	(-0.34, 0.28)	N/A	N/A	3.18	(2.50, 3.87)	8.31	(6.19, 10.42)
Small market	0.74	(0.47, 1.00)	N/A	N/A	1.37	(-0.22, 2.96)	-1.59	$(-9.25,6.07)$
Supermarket	0.32	(0.08, 0.56)	N/A	N/A	-0.77	(-1.90, 0.36)	9.41	(5.14, 13.69)
Tobacco/head shops	-0.64	(-0.90, -0.38)	0.62	(-0.42, 1.65)	0.86	(0.10, 1.63)	0.59	(-1.21, 2.38)
Vape only shops	N/A	N/A	-0.87	(-3.05, 1.31)	N/A	N/A	2.81	(0.66, 4.96)
Discount/other	0.80	(0.47, 1.13)	-1.63	$(-8.13,4.87)$	1.25	(-0.43, 2.92)	1.24	$(-4.88,7.37)$

Race/ethnicity (\%), Quartile 1 is the referent category

African American

Quartile 2	-0.01	$(-0.22,0.20)$	1.02	$(-0.39,2.44)$	0.18	$(-0.55,0.91)$	-0.28	$(-2.37,1.81)$	
Quartile 3	-0.08	$(-0.29,0.13)$	1.31	$(-0.15,2.77)$	0.80	$(0.03,1.57)$	-0.02	$(-2.17,2.12)$	
Quartile 4	-0.06	$(-0.29,0.17)$	0.76	$(-0.96,2.48)$	0.66	$(-0.13,1.46)$	0.06	$(-2.18,2.31)$	
Asian/Pacific Islander									
Quartile 2	0.08	$(-0.14,0.29)$	0.09	$(-1.48,1.67)$	-0.80	$(-1.57,-0.02)$	0.27	$(-1.83,2.36)$	
Quartile 3	0.20	$(-0.03,0.43)$	-0.58	$(-2.21,1.04)$	-0.49	$(-1.36,0.37)$	-0.05	$(-2.33,2.22)$	
Quartile 4	0.21	$(-0.03,0.45)$	-0.19	$(-1.85,1.46)$	-0.54	$(-1.41,0.32)$	0.75	$(-1.51,3.01)$	
Other/AIAN/Multi-racial									
Quartile 2	-0.14	$(-0.38,0.09)$	-1.34	$(-3.16,0.47)$	0.12	$(-0.76,0.99)$	0.09	$(-2.11,2.30)$	
Quartile 3	0.03	$(-0.22,0.28)$	-0.98	$(-2.82,0.86)$	-0.09	$(-1.02,0.83)$	-0.20	$(-2.66,2.26)$	
Quartile 4	-0.02	$(-0.29,0.25)$	-0.55	$(-2.50,1.40)$	-0.42	$(-1.40,0.56)$	0.13	$(-2.44,2.71)$	
Hispanic	Quartile 2	-0.18	$(-0.40,0.03)$	-1.46	$(-2.83,-0.10)$	-0.95	$(-1.64,-0.26)$	-0.56	$(-2.49,1.37)$
Quartile 3	-0.28	$(-0.55,-0.02)$	-1.31	$(-3.03,0.40)$	-1.30	$(-2.17,-0.42)$	-0.98	$(-3.27,1.31)$	
Quartile 4	-0.24	$(-0.59,0.11)$	-2.65	$(-5.15,-0.16)$	-1.27	$(-2.50,-0.04)$	-0.71	$(-3.97,2.55)$	

Age (\%), quartile 1 is the referent category
School age, 5-17 years

Quartile 2	-0.30	$(-0.51,-0.09)$	0.41	$(-0.80,1.61)$	-0.20	$(-0.87,0.47)$	-0.91	$(-2.64,0.82)$
Quartile 3	-0.31	$(-0.53,-0.09)$	0.54	$(-0.73,1.81)$	0.58	$(-0.15,1.31)$	-1.28	$(-3.28,0.71)$
Quartile 4	-0.26	$(-0.50,-0.01)$	0.98	$(-0.66,2.63)$	-0.28	$(-1.10,0.54)$	-0.35	$(-2.79,2.09)$

Young adult, 18-24 years

Quartile 2	-0.23	$(-0.45,-0.02)$	-0.78	$(-2.08,0.53)$	0.28	$(-0.40,0.96)$	2.10	$(0.23,3.97)$
Quartile 3	-0.41	$(-0.66,-0.17)$	-0.88	$(-2.51,0.76)$	-0.21	$(-1.00,0.58)$	0.17	$(-2.02,2.36)$
Quartile 4	-0.36	$(-0.61,-0.11)$	-0.02	$(-1.69,1.65)$	-0.27	$(-1.12,0.59)$	2.15	$(-0.16,4.46)$

Poverty, <185\% FPL

Quartile 2	-0.02	$(-0.24,0.20)$	0.43	$(-0.86,1.72)$	0.07	$(-0.61,0.76)$	1.24	$(-0.60,3.09)$
Quartile 3	-0.10	$(-0.34,0.14)$	0.07	$(-1.54,1.67)$	0.24	$(-0.55,1.04)$	0.84	$(-1.38,3.06)$
Quartile 4	-0.06	$(-0.34,0.22)$	0.47	$(-1.52,2.46)$	1.03	$(0.00,2.07)$	-0.06	$(-2.62,2.49)$

Population density

Quartile 2	-0.04	$(-0.25,0.17)$	-0.78	$(-2.21,0.65)$	-0.83	$(-1.50,-0.15)$	-1.04	$(-2.91,0.84)$
Quartile 3	-0.15	$(-0.36,0.07)$	-1.16	$(-2.54,0.22)$	-0.91	$(-1.61,-0.21)$	-1.24	$(-3.24,0.76)$
Quartile 4	-0.05	$(-0.27,0.17)$	-0.81	$(-2.26,0.65)$	-0.51	$(-1.27,0.26)$	-0.78	$(-2.81,1.25)$
Near school, within 1000 ft. of K-12 public school boundary	0.02	$(-0.14,0.18)$	0.93	$(-0.17,2.02)$	-0.30	$(-0.88,0.28)$	1.20	$(-0.47,2.88)$

For some outcomes, select store types removed because of no/low prices for product of interest. FPL=Federal poverty level.
AIAN=American Indian Alaskan Native.

Table 5: Presence of vape product advertisements, by store type ($\mathrm{n}=737^{*}$)

		Vape product (devices inc Juul, e-liquids) ads (interior/exterior) among subgroup of stores that sold any vaping products (n=737)				
Store type	Number of stores	Contained at least one ad (\%)	$	$	24.3%	
:---	---:					
Convenience	370					

*Subgroup of stores that sold vaping products.

Table 6: Price of vaping products relative to cheapest cigarette pack, regardless of brand

Store type	blu e-cigarette			Cheapest bottle of e-liquid			Juul pods 4-pack		
	Number of stores	Mean	SD	Number of stores	Mean	SD	Number of stores	Mean	SD
Convenience	132	3.66	1.91	51	1.42	2.88	102	18.43	3.09
Liquor store	26	4.28	2.31	19	-1.43	2.30	11	19.55	3.88
Pharmacy	48	6.93	2.08	45	8.77	7.49	N/A	N/A	N/A
Small market	7	5.12	3.12	2	-0.28	3.09	N/A	N/A	N/A
Supermarket	13	3.26	1.19	7	9.64	10.22	N/A	N/A	N/A
Tobacco/head shops	34	5.01	2.19	73	2.16	4.47	56	19.07	3.26
Vape (only) shops	N/A								
Discount/other	6	4.94	1.37	3	2.49	3.94	1	19.99	-
Total	266	4.53	2.35	200	3.36	6.12	170	18.72	3.19

NOTE: Outcome is the price of vape product minus price of cheapest cigarette pack (within-store difference). The price of blu was more than price of cheapest cigarette in all $\mathrm{n}=266$ stores with price data for both products. Stores needed to have valid price data for both measures to be included, yielding smaller sample sizes.

Table 7: Availability of menthol cigarettes, by store type ($\mathrm{n}=1115^{*}$)

Store type	Number of stores	Sold menthol
Convenience	556	99.3%
Liquor store	160	99.4%
Pharmacy	57	100.0%
Small market	91	97.8%
Supermarket	104	95.2%
Tobacco/head shops	91	100.0%
Vape (only) shops	0	$\mathrm{~N} / \mathrm{A}$
Discount/other	56	87.5%
Total	1115	98.3%

* Subgroup of stores that sold cigarettes

Table 8: Presence of advertisements by product, location and store type ($\mathrm{n}=1199$)

Store type	Number of stores	Vaping products	Cigarettes			Cigar products		
		Any ads	Interior	Exterior	Any ads	Interior	Exterior	Any ads
Convenience	557	44.0\%	79.9\%	46.9\%	82.4\%	42.9\%	7.4\%	45.1\%
Liquor store	167	16.2\%	65.3\%	29.9\%	70.1\%	40.7\%	10.8\%	44.3\%
Pharmacy	57	14.0\%	94.7\%	1.8\%	94.7\%	15.8\%	0.0\%	15.8\%
Small market	91	4.4\%	44.0\%	17.6\%	49.5\%	27.5\%	6.6\%	28.6\%
Supermarket	104	1.9\%	68.3\%	1.9\%	68.3\%	13.5\%	0.0\%	13.5\%
Tobacco/head shops	116	53.5\%	62.1\%	57.8\%	67.2\%	65.5\%	44.0\%	68.1\%
Vape (only) shops	45	40.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Discount/other	62	12.9\%	43.6\%	21.0\%	46.8\%	25.8\%	4.8\%	27.4\%
Total	1199	31.2\%	68.2\%	34.2\%	71.1\%	37.3\%	9.9\%	39.2\%

Table 9: Multivariate model of presence of any advertising for menthol cigarettes, flavored cigars

	Any menthol cigarette ads, among stores selling menthol cigarettes, $\mathrm{n}=1096$		Any flavored cigar ads, among stores selling flavored cigars, $\mathrm{n}=999$	
	AOR	95\% CI	AOR	95\% CI
Constant	0.86		0.245	
Store type				
Convenience store	Ref.	Ref.	Ref.	Ref.
Liquor store	0.38	(0.26, 0.57)	0.97	(0.65, 1.44)
Pharmacy	2.93	(1.20, 7.14)	0.38	(0.18, 0.82)
Small market	0.17	(0.10, 0.28)	1.08	(0.59, 1.98)
Supermarket	0.66	(0.41, 1.05)	0.64	(0.32, 1.29)
Tobacco/head shops	1.16	(0.66, 2.02)	2.78	$(1.76,4.37)$
Vape only shops	N/A	N/A	N/A	N/A
Discount/other	0.36	(0.19, 0.67)	0.69	(0.30, 1.61)
Race/ethnicity, \%, Quartile 1 is the referent category				
African American				
Quartile 2	1.00	(0.67, 1.49)	1.17	$(0.76,1.81)$
Quartile 3	1.44	(0.95, 2.19)	1.20	(0.78, 1.86)
Quartile 4	1.78	(1.14, 2.78)	2.17	(1.38, 3.42)
Asian/Pacific Islander				
Quartile 2	1.26	(0.83, 1.90)	1.00	(0.65, 1.54)
Quartile 3	1.07	(0.69, 1.67)	0.81	(0.51, 1.29)
Quartile 4	1.09	(0.69, 1.73)	1.01	(0.63, 1.63)
Other/AIAN/Multi-racial				
Quartile 2	1.28	(0.82, 2.00)	1.51	(0.95, 2.38)
Quartile 3	1.09	(0.67, 1.77)	1.03	(0.62, 1.72)
Quartile 4	0.99	(0.59, 1.65)	1.04	(0.60, 1.80)
Hispanic				
Quartile 2	1.06	(0.69, 1.63)	1.82	(1.15, 2.88)
Quartile 3	0.77	(0.45, 1.29)	2.03	$(1.16,3.55)$
Quartile 4	0.59	(0.30, 1.15)	6.46	(3.15, 13.25)
Age, \%, Quartile 1 is the referent category				
School-age youth, 5-17 years				
Quartile 2	2.29	(1.52, 3.44)	0.83	(0.55, 1.27)
Quartile 3	2.04	(1.33, 3.13)	0.88	(0.57, 1.37)
Quartile 4	2.98	(1.80, 4.92)	0.41	(0.24, 0.68)
Young adult, 18-24 years				
Quartile 2	1.65	(1.09, 2.50)	0.95	(0.61, 1.48)
Quartile 3	1.81	(1.13, 2.90)	1.18	(0.72, 1.93)
Quartile 4	1.74	(1.07, 2.82)	1.18	(0.72, 1.95)
Population density, Quartile 1 is the referent category				
Quartile 2	1.12	(0.74, 1.68)	1.19	(0.78, 1.82)
Quartile 3	1.11	(0.73, 1.70)	1.15	(0.75, 1.78)
Quartile 4	0.78	(0.51, 1.20)	1.70	(1.10, 2.65)
Poverty, <185\% FPL, \%, Quartile 1 is the referent category				
Quartile 2	1.33	(0.85, 2.06)	0.68	(0.43, 1.05)
Quartile 3	1.03	(0.64, 1.66)	0.47	(0.28, 0.77)
Quartile 4	0.65	(0.38, 1.13)	0.42	(0.24, 0.75)
Near school, within 1000 ft . of K-12 public school boundary	1.09	(0.80, 1.49)	1.23	(0.90, 1.69)

Cell entries are adjusted odds ratio and 95% confidence intervals. Flavored cigars refers to explicit flavors.
FPL=Federal poverty level. AIAN=American Indian Alaskan Native. For some outcomes, select store types removed because of low frequency yielding non-convergence or poor model fit (i.e., irregular standard errors).

Table 10: Multivariate models for presence of advertising for mobile coupons and any discount

	Any mobile coupon (cigarettes, cigar, vaping products) interior/exterior, n=1097		Any tobacco discount (ads, on-pack cigarettes, unbranded shelf strip, mobile coupons), $\mathrm{n}=1199$	
	AOR	95\% CI	AOR	95\% CI
Constant	0.15		1.39	
Store type				
Convenience store	Ref.	Ref.	Ref.	Ref.
Liquor store	0.20	(0.12, 0.34)	0.29	(0.20, 0.42)
Pharmacy	N/A	N/A	8.29	(1.98, 34.69)
Small market	0.06	(0.02, 0.19)	0.15	(0.09, 0.25)
Supermarket	0.10	(0.04, 0.22)	0.36	(0.23, 0.57)
Tobacco/head shops	0.77	(0.49, 1.21)	0.57	(0.36, 0.89)
Vape only	N/A	N/A	0.11	(0.05, 0.22)
Discount/other	0.12	(0.05, 0.32)	0.21	(0.12, 0.38)
Race/ethnicity, \% quartiles				
African American				
Quartile 2	1.36	(0.86, 2.13)	1.11	(0.76, 1.63)
Quartile 3	1.21	(0.76, 1.91)	1.35	(0.90, 2.00)
Quartile 4	0.90	(0.55, 1.48)	1.13	(0.75, 1.72)
Asian/Pacific Islander				
Quartile 2	1.17	(0.74, 1.84)	1.06	(0.71, 1.57)
Quartile 3	1.24	(0.76, 2.03)	0.96	(0.63, 1.46)
Quartile 4	0.99	(0.59, 1.65)	0.89	$(0.58,1.38)$
Other/AIAN/Multi-racial				
Quartile 2	1.51	(0.91, 2.50)	1.40	(0.91, 2.14)
Quartile 3	1.07	(0.61, 1.86)	1.50	(0.94, 2.38)
Quartile 4	1.47	(0.83, 2.61)	1.27	$(0.78,2.07)$
Hispanic				
Quartile 2	1.22	(0.77, 1.91)	1.18	(0.79, 1.76)
Quartile 3	0.82	(0.47, 1.43)	0.79	(0.48, 1.29)
Quartile 4	0.44	(0.21, 0.93)	0.80	(0.42, 1.50)
Age, \%, quartiles, Quartile 1 is the referent category				
School age, 5-17 years				
Quartile 2	2.54	(1.61, 4.01)	1.64	(1.12, 2.40)
Quartile 3	2.89	(1.78, 4.69)	1.60	(1.07, 2.40)
Quartile 4	4.15	(2.42, 7.13)	1.79	(1.13, 2.85)
Quartile 2	1.09	(0.70, 1.70)	1.58	(1.07, 2.35)
Quartile 3	1.26	(0.76, 2.09)	1.59	(1.02, 2.47)
Quartile 4	1.35	(0.80, 2.29)	1.46	(0.92, 2.30)
Population density, Quartile 1 is the referent category				
Quartile 2	1.17	(0.76, 1.80)	0.96	(0.65, 1.42)
Quartile 3	1.40	(0.89, 2.18)	0.94	(0.63, 1.40)
Quartile 4	1.01	(0.62, 1.65)	0.69	(0.46, 1.04)
Poverty, <185\% FPL, \%, Quartile 1 is the referent category				
Quartile 2	1.38	(0.86, 2.19)	1.25	(0.83, 1.89)
Quartile 3	1.11	(0.67, 1.85)	0.96	(0.61, 1.51)
Quartile 4	0.98	(0.54, 1.79)	0.85	(0.51, 1.41)
Near school, within 1000 ft . of K-12 public school boundary	0.99	(0.70, 1.40)	1.06	(0.79, 1.42)
*FPL= Federal poverty level. AIAN=American Indian Alaskan Native. Cell entries are adjusted odds ratio and 95% confidence intervals. Advertisements could be exterior or interior. For some outcomes, select store types removed because of low frequency yielding non-convergence or poor model fit (irregular SEs etc.).				

APPENDIX I: Inter-rater reliability analysis for select variables ($\mathrm{n}=100$)

	Kappa	Percent agreement
AVAILABILITY, BY PRODUCT TYPE AND FLAVOR CATEGORY		
Cigarettes		
Non-menthol		100\%
Menthol	0.75	97\%
Cigars		
Cigarillos	0.78	94\%
Cigar wraps/blunt wraps	0.60	80\%
Large cigars	0.71	90\%
20-packs little filtered cigars	0.35	85\%
Cigar product flavors		
Mint/menthol	0.31	65\%
Fruit	0.79	93\%
Candy	0.53	82\%
Alcohol	0.70	88\%
Concept	0.55	83\%
Juul product availability		
Starter kit	Too few to est	78\%
Pods alone	0.25	80\%
Device alone	Too few to est	80\%
Vaping device availability (includes cartridges)		
E-cigarettes	0.70	85\%
Closed tank systems	0.71	87\%
Open tank systems	0.74	92\%
Vaping device flavors (includes cartridges)		
Mint/menthol	0.69	88\%
Fruit	0.68	88\%
Candy	0.58	86\%
Alcohol	0.30	92\%
Concept flavors	Too few to est	87\%
E-liquid	0.78	93\%
E-liquid flavors		
Mint/menthol	0.79	94\%
Fruit	0.80	94\%
Candy	0.80	94\%
Alcohol	0.75	95\%
Concept	0.80	95\%
ADVERTISING MEASURES		
Mobile coupons		
Any interior	0.28	77\%
Any exterior	0.67	84\%
Discount on pack, unbranded shelf strip Any vape	0.44	87\%
Any cigarette	0.58	80\%
Cigarette ads		
Interior ad with discount	0.37	71\%
Exterior ad with discount	0.34	84\%
Cigar ads		
Interior	0.20	60\%
Exterior	0.60	89\%
Interior ad with discount	N/A	91\%
Exterior ad with discount	0.39	97\%
PRICES (BEFORE SALES TAX)		ICC
Cheapest pack of cigarettes		0.88
Juul	Too few cases	estimate
E-liquid		0.77
blu		0.69

APPENDIX II: CTRSS 2018 Marketing Surveillance Instrument

