Introduction to Microbiology

Last Updated 2019

Basics of Infection Prevention
Healthcare-Associated Infections Program
Center for Health Care Quality
California Department of Public Health

Objectives

- Describe role of the laboratory in infection prevention
- Describe basic laboratory test for infectious pathogens
- Discuss common HAI pathogens

Microbiology and Infection Prevention

Microbiology has two important functions related to the prevention and control of infections:

- Clinical: identify pathogens and their susceptibility to treatment
- Epidemiological: identify pathogens causing disease or outbreak in a population and potential sources for these pathogens

Assessing Accuracy of Lab Results

- No lab test is 100% accurate 100% of the time
- Many factors can affect accuracy of laboratory tests
 - 1. <u>Pre-testing</u>: specimen collection, handling, transportation, and preservation prior to arrival in the lab
 - 2. <u>During testing</u>: specimen processing, skill of the laboratory technician, accuracy of biochemicals and instrument system
 - 3. <u>Post-testing</u>: Accuracy of result transcription, results communicated accurately

Interpreting Microbiology Test Results

- Presence of an organism does not mean it is causing disease
 - For sterile body sites, bacterial growth may confirm an infection
- Interpret all cultures in the context of what pathogens are normally found in that body site
- Contamination of samples can result in inaccurate results and pseudo-outbreaks
- To interpret microbiology test results, use in conjunction with blood cell counts

Complete Blood Cell Count (CBC)

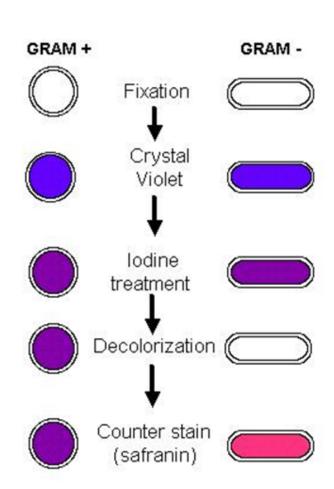
- Blood test used to evaluate overall health
 - Including the detection or absence of infection
- Measures blood components
 - Including white blood cells (WBC)

White Blood Cell (WBC) Types

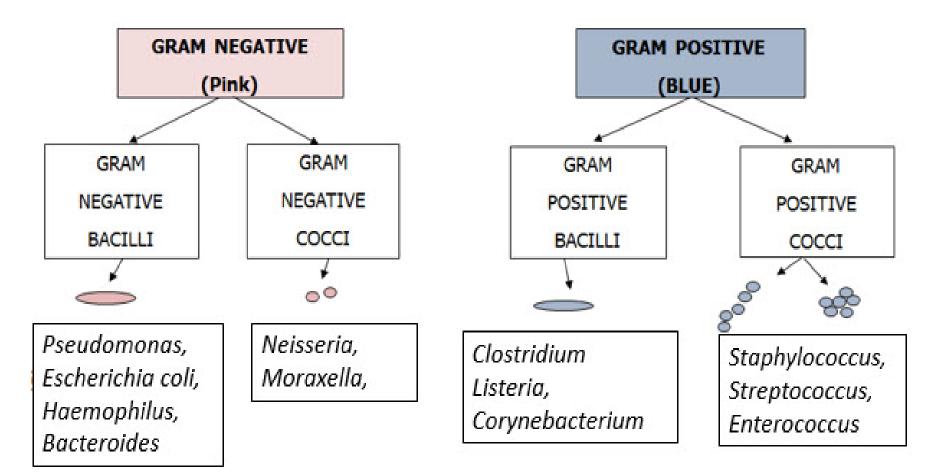
- Polymorphonuclear leukocytes (PMN): provide general response to threat
 - **Neutrophils** (50-60% of WBC); the first line of response to infection; also be called 'segs'
 - Eosinophils (1-7% of WBC); seen with allergic reactions and parasites
 - Basophils (<1% of WBC); seen with allergic reactions,
 help mediate strength of immune response
- Left shift = presence of immature neutrophils (called 'bands' or 'stabs') indicating acute infection or inflammatory process

White Blood Cell (WBC) Types - 2

- Lymphocytes mature in the lymphatic portion of the immune system
 - Include pathogen-specific immune response (B cells, T cells)
 - Increase may be indicative of viral infection
- Monocytes (or macrophages) have phagocytic function and eat cellular debris and foreign pathogens in the immune system


Serology

- Diagnostic test that identifies immunoglobulins (antibodies) in blood serum
- Immunoglobulins (Ig) are proteins that bind to viruses and bacteria
- Types
 - IgM: produced immediately after exposure (acute phase of disease)
 - IgG: most abundant; long term response to disease (chronic disease)
 - IgA: secretory, present in mucosal linings
 - IgE: plays a role in hypersensitivity reactions


Gram Stain

- Microbiology lab method of classifying bacteria into 2 large groups: positive (+) and negative (-)
- Differentiates bacteria by the chemical and physical properties of their cell walls
- Helpful in guiding initial empiric therapy

Gram Stain Identifies Four Basic Bacteria Groups

Common Lower Respiratory Tract Pathogens

- Community-acquired pneumonia (CAP)
 - S. pneumoniae, H. influenzae, Mycoplasma
- Hospital-associated pneumonia; most often ICU or ventilatorassociated
 - Pseudomonas aeruginosa
 - Stenotrophomonas maltophilia
- CAP or hospital-associated pneumonia
 - Staphylococcus aureus (MRSA or MSSA)
 - Moraxella catarhallis (most often CAP)

Testing for Lower Respiratory Bacterial Pathogens

- Sputum and bronchial wash are often contaminated with oral flora
- Tracheal aspirates and protected brush specimens not contaminated with oral flora

Interpreting Results from Sputum Specimens

- Results are affected by quality of sputum specimen
 - Squamous epithelial cells (SEC) shed from the lining of the mouth and pharynx; presence indicates saliva and oral flora
 - <10 excellent specimen, no appreciable contamination
 - 10-25 equivocal but acceptable
 - >25 reject due to unacceptable levels of oral contamination
- Assess number of WBC
 - < 10 no infection or poor immune response
 - 10-25 equivocal
 - >25 purulence indicates presence of infection

Cerebrospinal Fluid (CSF) Pathogens

- Meningitis often from viruses or upper respiratory flora
- Meningitis due to gram-negative rods or staphylococcus usually associated with predisposing factors such as trauma
- Most common meningitis in an adult, Streptococcus pneumoniae (gram-positive cocci in pairs)
 - Generates increased WBC response
- Meningococcus (gram-negative cocci in pairs) is diagnostic of Neisseria
 - A single case is a true infection emergency

Meningitis

Onset of Symptoms

Patient presents for medical evaluation Lumbar Puncture (LP)

Bacterial

CSF cloudy
elevated protein
decreased glucose
WBC; positive neutrophils
organisms on gram stain

<u>Viral</u> (aseptic)

CSF clear
normal or elevated protein
normal glucose
no organisms on gram stain

Blood Cultures

- A single blood culture specimen is collected in two bottles
 - Bottles are designed to recover either aerobes or anaerobes
 - Growth may occur in one or both bottles
- In adults, low numbers of bacteria in blood (≤30/mL) can lead to negative-gram staining and false negatives
- Collecting the appropriate volume of blood (40cc blood for 4 bottles) is important
- Poor specimen collection technique can introduce contaminants to the specimen which are often common skin commensal flora

Common Urinary Tract Infection (UTI) Pathogens

- Gram-negative organisms:
 - E. coli: Causes 80% of all UTI
 - Proteus, Klebsiella, Enterobacter, Pseudomonas, and Gardnerella
- Gram-positive organisms:
 - Staph, Enterococcus, Staphylococcus saprophyticus

Urinalysis (UA)

- Positive leukocyte esterase or nitrite found on a UA can be helpful in determining presence of WBC
- Increased WBC in urine with negative cultures may indicate infection with chlamydia or gonorrhea

Common Pathogens of Deep Incisional and Organ/Space SSI

- Anaerobic do not require oxygen to grow
 - B. fragilis
 - Clostridium
 - Peptostreptococcus
 - Propionibacterium (septic arthritis, endocarditis, suture sites for craniotomy)

Aerobic

- Staphylococcus
- Streptococcus
- Gram-negative rods (GNR)

Common Bowel Flora

- A normal mix of bacterial flora maintain gut health
- With altered conditions, yeast, C. difficile, pseudomonas species, VRE, and others can pathogenically dominate the flora
- Enterobacter, Enterococcus, Proteus, Morganella, Peptostreptococcus, Bacteroides, Clostridium and Bifidobacterium species constitute 95-99% of the more than 400 species in the bowel

Antibiotic Resistance (AR)

- AR emerges when some or all of a species or subspecies of bacteria survive exposure to an antibiotic
 - Can be intrinsic or transferred
 - Multi-drug resistance organisms (MDRO) are resistant to multiple antibiotic agents
- An antibiogram shows the proportion of bacteria resistant to specific antibiotics in a hospital or region
 - Used for clinical decision-making

Resistance: Extended Spectrum Beta-Lactamase (ESBL) Producing Gram-Negative Rods (GNR)

- Each new generation of Cephalosporins have greater activity on GNR through new forms of beta-lactam
 - Resistance develops to new beta-lactams by new forms of beta-lactamases
- GNR are now resistant to 3rd generation Cephalosporins (e.g., cefotaxime, ceftazidime, ceftriaxone) and Monobactams (e.g., aztreonam) by ESBLs
- ESBL producing GNR remain susceptible to cephamycins (e.g., cefoxitin, cefotetan, cefmetazole) and carbapenems (e.g., meropenem, imipenem)

Resistance: Carbapenem Resistant Enterobacteriaceae (CRE)

- Carbapenems are becoming the last β -Lactam antibiotic class for treatment of ESBL infections
- New Delhi metallo-beta-lactamase 1 (NDM-1)
 carbapenemase-resistant Enterobacteriaceae (CRE) was
 detected in 2008; susceptible only to polymyxins and
 tigecycline.
- Few treatment options are available

CDC guidance for management of CRE infected patients, 2015 https://www.cdc.gov/hai/organisms/cre

Laboratory Tests for Tuberculosis AFB

- Acid Fast Bacillus (AFB)
 - Distinguishes bacteria that retain stain in the presence of an acid decolorizer.
 - Present with Mycobacterium species (tuberculosis, avium and others)
 - Very few structures are acid-fast; which makes acid-fastness particularly useful in diagnosis
- Direct fluorescent antibody (DFA) tests for identification of respiratory viruses

Laboratory Test for Respiratory Viruses

- Direct fluorescent antibody (DFA) tests identify respiratory viruses
- Detected from nasal wash samples of patient/residents with suspected infection

Hepatitis A Virus Test Results

- Hepatitis A Virus (HAV)
 - Hepatitis A Total: current or past HAV
 - Hepatitis A, IgM: acute HAV infection

Hepatitis B Virus Test Terminology

antigen	Foreign microbe causing an immune response				
antibody	Immune (proteins) response to an antigen				
IgM	Immune globulin M, 1st antibody to appear after exposure to an antigen				
НВ	h epatitis B virus				
HBsAG	surface antigen test; detects a current infection				
anti-HBc	core antibody test; detects if ever been infected				
anti-HBs	surface antibody test; past infection or vaccination (immune)				
IgM anti-HBc	antibody response due to initial exposure to HB core antigen				
HbeAG	HB e antigen; acute HB infection marker indicates highly infectious				

Hepatitis B Virus Test Results

Interpretation	HBsAG	anti-HBc	anti-HBs	IgM anti-HBc	HbeAG
Susceptible to HBV infection	neg	neg	neg		
Immune due to prior HBV infection	neg	pos	pos		
Immune due to hepatitis B vaccination	neg	neg	pos		
Acutely infected with HBV	pos	pos	neg	pos	
Chronically infected with HBV	pos	pos	neg	neg	
Highly Infectious					pos

CDC Interpretation of Hepatitis B Serologic Test Results https://www.cdc.gov/hepatitis/HBV/PDFs/SerologicChartv8.pdf

Hepatitis C Viral Testing

Hepatitis C Virus (HCV)

- Hepatitis C antibody (Anti-HCV)
 - Exposure to hepatitis C
 - Active, chronic, or resolved
- Hepatitis C Qualitative (RNA PCR)
 - Identifies genetic material of the virus, detectable earlier than antibody tests
 - Used to screen after exposure
 - Confirmatory test of antibodies to the virus

Rapid Diagnostic Laboratory Tests

- Rapid human immunodeficiency virus (HIV) test detects antibodies with high sensitivity and specificity
 - Use confirmatory testing to verify false positives
- Fast antigen detection for influenza but 44-60% false positives
 - Use confirmatory testing to verify
- Rapid Group A Streptococci antigen detection with 95% specificity
 - Will also detect carriers

Rapid Laboratory Tests - 2

- Polymerase chain reaction (PCR) assays
 - Makes thousands of copies of a DNA segment specific to an organism so it can be detected by identifying tests
 - Available for a number of bacterial and viral pathogens
 - Highly sensitive; may not indicate viability of organism
 - Expensive, but getting less so

Many Laboratory Test Methods for Infectious Pathogens and Disease

- Serology testing looks for antibodies that demonstrate exposure/infection
- Cultures identify causative pathogens
- Antibiotic susceptibility tests of bacterial cultures identify the susceptibility or resistance to specific antimicrobial agents
- Microscopic evaluation performed for fungal infections
 - Wet mounts for vaginal organisms, CSF, skin

Summary

- Microbiology laboratory is important for HAI Prevention
 - Managing outbreaks
 - Performing additional screening and confirmatory tests for epidemiologic investigations
 - Infection surveillance
 - Alerts to unusual pathogens or changes in antibiotic susceptibility in the population
 - Local antibiogram development
 - Assistance with interpretation of test results

Additional Resource

Brooks, K. Ready Reference for Microbes, 3rd Ed., 2012

Questions?

For more information, please contact any HAI Liaison IP Team member

Or email HAIProgram@cdph.ca.gov

